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Abstract—3D tracking plays a vital role in 3D applications by 

enhancing interaction between real and virtual world. We 

present various real-time 3D motion estimation approaches 

developed in photogrammetry and computer vision fields and 

compare their performance. The methods developed in both 

fields estimates 3D motion of a moving object relative to a 

camera or equivalently moving camera relative to the object in 

an image sequence when its corresponding features are known 

at different times. We reviewed 3D motion models formulated 

by different methods related to their geometric properties. We 

implemented four different methods and analyzed their 

performance results. Comparison from test datasets from image 

sequences demonstrated that homography based approaches in 

both fields were more accurate than relative orientation or 

essential matrix based approaches under noisy situations. 

Keywords-motion estimation; correspondence point; moving 

object;  

I.  INTRODUCTION  

Recovering the motion of the object from an image 
sequence is an important task in variety of applications, 
including augmented reality, 3D navigation and manipulation. 
The motion estimation problem has been proposed under 
different approaches depending on the image sensor and 
choice of methodology.  

In this study, we present real-time motion estimations of a 
moving object in image sequences taken by a single camera. 
We have used four estimation methods for determining 3D 
motion based on tracked feature correspondences. Two of 
them are developed under computer vision approach, and two 
of them under photogrammetric approach. We note that most 
previous investigations for 3D motion estimation have not 
compared the methods developed in computer vision and 
photogrammetry thoroughly. Since a number of applications 
have evolved by linking techniques developed in both fields 
in recent years, we aim to contribute to this motivation. We 
will point out their theoretical and practical differences at 
implementation level. 

In computer vision, automatic relative orientation of 
image sequences has been widely investigated with 
assumption of a calibrated camera. Essential matrix is defined 
up to a scale factor for translations as set of linear 
homogeneous equations by establishing feature 
correspondences. Relative pose parameters of the perspective 
two views are computed by decomposing an essential matrix 

[1]-[2]. The estimation methods of relative camera pose from 
various number of point correspondences in various 
applications were developed [3]-[5]. Moreover, pose 
parameters of a camera relative to planar object can be 
estimated by decomposing a homography matrix through 
point correspondences. The numerical and analytical methods 
for 3D pose from homography decomposition were 
introduced in detail [6]. The authors in [7]-[10] also 
introduced 3D pose estimation based on homography matrix 
in augmented reality and robot control applications.  

In classic photogrammetry, to determine the position and 
orientation of right image relative to left image frame from tie-
points by assuming known intrinsic parameters is an 
important task where no ground truth is assumed. It is also 
well known as relative orientation process if a sufficient set of 
corresponding points in an image sequence have been 
identified [11]. Mathematically, relative orientation 
parameters as motion parameters can be determined by 
collinear or coplanar equations [12]-[15].  

This paper organized as follows. Mathematical models for 
approaches will be described in Section 2. Methodology of 
implementation steps will be presented in Section 3. 
Performance analysis of estimations will be discussed in 
Section 4. 

II. MOTION MODEL 

We have assumed that a camera is stationary. The camera 
has taken an image sequence of the moving object through its 
field of view.  

Let the coordinate system be fixed on the camera with its 
origin O at the optical center. The z axis is coinciding with the 
optical axis and pointing to the direction of view. Without loss 
of generality, we assume that focal length is unity. The image 
plane is located at a distance equal to the focal length. 
Consider X1 ∈ ℝ3 object space coordinates of a point P1 on a 
rigid object moves to X2 ∈ ℝ3  object space coordinate of a 
point P2 with respect to a camera coordinate system. Using a 
perspective projection model, the point P1 is projected at x1 ∈
ℝ3  image space coordinates of a point p1  at time  t1 . 
Similarly, the point P2  is projected at x2 ∈ ℝ3  image space 
coordinates of a point p2  at time t2  on the image plane as 
shown in Fig. 1.  

To summarize, our problem is: 
Given two image views with correspondences (𝑝1, 𝑝2),  
Find 3D rotation and 3D translation up to scale.  



Figure 1.  Geometry of imaging system. 

Due to the rigidity constraint of the object motion, P1 and 
P2 are related by rotation matrix R and translational vector T: 

 
X2 = RX1 + T  (1) 
 
This can be written in triple product of vector, which is 

often called as coplanarity or epipolar constraint. 
 

x2
TT̂Rx1 = 0   (2) 

 
Associated with Eq. (2), we will define proposed methods 

for motion estimation in both fields. 

A. Recovering 3D motion from essential matrix in computer 

vision 

We can reformulate Eq. (2) as well-known essential matrix 
for the relative pose between two views. 

 

𝐸 = �̂�R ∈ ℝ3×3,            𝑥2
𝑇𝐸𝑥1 = 0      (3)  

 

Here, �̂� is defined as  �̂� = [

0 −𝐵𝑧 𝐵𝑦

𝐵𝑧 0 −𝐵𝑥

𝐵𝑦 𝐵𝑥 0
] 

 

𝐸 has singular value decomposition (SVD) as defined: 

 

𝐸 = 𝑈Σ𝑉𝑇 (4) 

 

where 𝑈  and 𝑉  are chosen such that det(𝑈) > 0 

and  det(𝑉) > 0 , and  Σ = diag{1, 1, 0} . Furthermore, the 

following formulae give the two distinct solutions for rotation 

and translation vector from essential matrix. 

 

𝑅 = 𝑈 [
0 ∓1 0

±1 0 0
0 0 1

] 𝑉𝑇 , �̂� = 𝑈 [
0 ∓1 0

±1 0 0
0 0 0

] 𝑈𝑇       (5) 

 

One of the four possible solutions corresponds true solution 

for Eq. (5) that can be chosen by enforcing constraint, called 

cheirality test [16]. 

B. Recovering 3D motion from homography matrix in 

computer vision 

Let a point 𝑃𝑖  on a 2D plane 𝜋  in 3D space,  𝑛 =
[𝑛1, 𝑛2, 𝑛3]  be the unit normal vector to the plane 𝜋 , and 
𝑑 (𝑑 > 0) denote the distance from the plane 𝜋 to the optical 
center of the camera. Suppose the optical center of the camera 
never passes through the plane 𝜋. Then we have as following 
equation from Eq. (1) with normalizing translational vector 𝑇 
by plane depth 𝑑: 

 

X2 = RX1 + T = (𝑅 +
1

𝑑
𝑇𝑛𝑇) 𝑋1 =  HX1  (6) 

Here,  

𝐻 = (𝑅 +
1

𝑑
𝑇𝑛𝑇) ∈ ℝ3×3  

 

We call the matrix 𝐻 as the planar homography matrix, since 

it denotes a linear transformation from X1 ∈ ℝ3 to X2 ∈ ℝ3. 

Since 𝐻  depends on the motion parameters {𝑅, 𝑇}  and the 

structure parameters  {𝑛, 𝑑} , due to scale ambiguity in the 

term 
1

𝑑
𝑇  in equation (6), we have homography mapping 

induced by a plane 𝜋. 

 

x2~Hx1  (7) 

 

After we have recovered 𝐻  from at least four point 

correspondences, we can decompose such a matrix into its 

motion and structure parameters by SVD [6].  

 

𝐻 = 𝑈Σ𝑉𝑇 (8) 

 

where 𝑈 and 𝑉 are orthogonal matrices and a diagonal matrix 

is Σ, which contains singular value of 𝐻. 
After decomposition, we also obtain four solutions: two 

completely different solutions and their opposites for 
decomposing 𝐻  matrix. In order to reduce the number of 
physically possible solutions, we impose the positive depth 

constraint, having 𝑛𝑇𝑒 > 0, 𝑒 = [0,0,1]𝑇 , since the camera 
can see only points in front of it. 

C. Recovering 3D motion from relative orientation in 

photogrammetry 

In photogrammetry relative orientation is a well-known 
process of determining relative position and orientation of the 
first view of the frame with respect to next view of the frame 
in a sequence. As shown in Eq. (2), essential matrix 
determined in computer vision is mathematically identical to 
the equation determined in coplanar condition used in 
photogrammetry. This has been well confirmed in [14][16]. 
By reformulating equivalently non-linear equations in 
coplanar condition [13] to identical Eq. (2), we can write as 
following: 

 

[

𝐷1

𝐸1

𝐹1

] = [

𝑖𝑥1

𝑗𝑥1

𝑘𝑥1

] ,    [

𝐷2

𝐸2

𝐹2

] = [

𝑖𝑥2

𝑗𝑥2

𝑘𝑥2

],    

 



Figure 2.  Parameter configurations of relative orientation 

 

R = [

𝑖𝑥 𝑗𝑥 𝑘𝑥

𝑖𝑦 𝑗𝑦 𝑘𝑦

𝑖𝑧 𝑗𝑧 𝑘𝑧

] ,   𝑏 = [𝐵𝑥 , 𝐵𝑦 , 𝐵𝑧]       (10) 

 

𝑖𝑥 = cosφ ∗ cosκ; 𝑗𝑥 = cosφ ∗ sinκ;  𝑘𝑥 = sinφ;  
𝑖𝑦 =    sinω ∗ sinφ ∗ cosκ +  cosω ∗ sinκ;        

𝑗𝑦 = −sinω ∗ sinφ ∗ sinκ +  cosω ∗ cosκ;    

𝑘𝑦 = −sinω ∗ cosφ;    

𝑖𝑧 = −cosω ∗ sinφ ∗ cosκ +  sinω ∗ sinκ;     
𝑗𝑧 =  cosω ∗ sinφ ∗ sinκ +  sinω ∗ cosκ; 
𝑘𝑧 = cosω ∗ cosφ;  

 

Then triple-scalar product of the three vectors as following. 

 

𝐵𝑥 ∙ (𝐸1𝐹2 − 𝐸2𝐹1) + 𝐵𝑦 ∙ (𝐹1𝐷2 − 𝐹2𝐷1) + 𝐵𝑧 ∙

(𝐷1𝐸2 − 𝐷2𝐸1) = 0          (11) 

 
Here, ω is rotation about the 𝑥 axis, φ is rotation about the 

𝑦  axis, and κ  is rotation about the 𝑧  axis. 𝐵𝑥  is translation 

about the 𝑥 axis, 𝐵𝑦 is translation about the 𝑦 axis, and 𝐵𝑧 is 

translation about the 𝑧 axis. From this non-linear equation the 
three unknown parameters of the rotation matrix R and the 
two unknown components of the base vector can be obtained 
by Taylor’s linearization in a least squares solution. We set all 
six variables equal to zero for the first view by considering no 
movement of object in this view. The iterative method for 
solving non-linear equation requires an initial guess for each 
unknown parameter for its convergence. In particular, we can 
make the simplifying assumption that ω = φ = κ = 0° for the 
second view orientation by assuming a constant fixed value 

for  𝐵𝑥 ,  𝑜𝑟 𝐵𝑦  based on parallax differences between two 

views as illustrated in Fig. 2. 

D. Recovering 3D motion from homography based relative 

orientation in photogrammetry 

By reformulating matrix Eq. (7), we can obtain non-linear 
equation since the mapping from the first to the next image is 
given by the homography. 

 

 x2 ≅ (R +
1

d
TnT) x1   (12) 

 

The eight unknown parameters of this equation can be 
described for the five parameters (𝜔, 𝜑, 𝜅, 𝐵𝑥 , 𝐵𝑧)  of the 
relative motion and three parameters (𝑛1, 𝑛2, 𝑛3) of the plane 
in object space. Similarly, this equation can be solved by 
Taylor’s linearization in a least squares solution with a priori 

fixed value for 𝐵𝑥,  𝑜𝑟 𝐵𝑦, as illustrated in Fig. 2. Note that we 

set 1 for variable of 𝑛3 for its initial value. 

III. METHODOLOGY 

In this section, we explain implementation steps of the 
proposed method for estimation of the motion parameters. 
Fig. 3 provides a process flow of the proposed method. We 
estimate 3D motion parameters of the moving object for two 
consecutive frames with point correspondences between them 
from a single camera.  

Firstly, we capture an initial frame at time 𝑡1, and extract 
a template region from it as described in Fig. 3. Then feature 
points are computed for the extracted template region by using 
SIFT feature extractor as illustrated in Fig. 3. Once we define 
template region in the initial frame, real-time processing is 
started with all computational steps. 

Secondly, when a new frame at time 𝑡2 of a moving object 
is captured, feature points of the new frame are extracted. 
Feature points of the new frame are matched with the feature 
points of the template region as described in Fig. 3. The best 
matches as corresponding points between two frames are 
found by a Brute Force matcher with eliminating outliers 
among the matched points based on RANSAC (Random 
Sample Consensus) method. To eliminate outliers in the 
feature correspondences before estimation of the motion 
parameters, we have used different RANSAC method for each 
of the four proposed approaches: homography-based 
RANSAC for the estimation method using homography 
decomposition in computer vision and the method using 
relative orientation based on homography in photogrammetry; 
essential matrix-based RANSAC for the method using the 
decomposition of essential matrix in computer vision; and 
relative orientation-based RANSAC for the method using the 
relative orientation parameters in photogrammetry.  

Thirdly, when all processing steps are accumulated as 
mentioned above, motion estimations are implemented for the 
matched corresponding points between the initial frame and 
the next frames of the image sequences.  

IV. PERFORMANCE OF 3D MOTION ESTIMATION 

We implemented the proposed methods in 
photogrammetry and computer vision with the C++ 
programming language, Visual Studio programming tool, 
OpenCV 2.4.9 library and OpenGL graphic library on a PC 
with the Intel(R) Core(TM) i5, CPU 3.0 GHz, 4096 RAM and, 
with a Microsoft LifeCam. Intrinsic parameters of the camera 
such as focal length, principle point, and lens distortion 
coefficients are known by camera calibration toolbox, GML. 
We examined the performance of the four estimations by a 
real dataset created from real scenes and a simulated dataset 
created from OpenGL library.  

 



   
Figure 3.  Process flow of the proposed method 

For creation of the real dataset, we firstly captured video 
sequences for a moving object with 640 × 360 pixel 
resolution while changing object position in the front of the 
static camera along each axis and rotating around each axis 
across field of view of it. Note that object position was 
arbitrarily fixed before changing it. Distance of the moving 
object was varied 300 mm closer to 800 mm away from the 
camera in direction of z axis. Translation of the object was 
varied up to 200 mm in 𝑥  and 𝑦  direction. Rotation of the 
object around 𝑧 axis was varied up to 90 degrees, and rotation 
of the object around 𝑥 and 𝑦 axis was varied up to 20 degrees. 
We used thousands of images of the different textured objects 
to check estimation accuracy of the motion parameters. Object 
templates used in experiments and their descriptions are 
illustrated in Table 1.  

TABLE I.  DATASET USED IN EXPERIMENT 

Dataset for a real scene 

Template 

     
No. of points 115 104 78 151 159 

Size 150 × 120 

Dataset for a simulated scene 

3D object polygon cube pyramid polygon cube 

Edge length 15 15 15 13 13 

No. of Points 15 25 25 13 25 

 
For the simulated dataset, we created different 3D objects 

such as polygon, pyramid and cube with different edge 
lengths, and manually measured up to 25 feature points with 
2-3 pixels noise on the 3D objects. The simulated sequences 
for a moving 3D object were created by perspective projection 
with choosing largest focal length that keeps the object in field 
of view throughout sequences. Descriptions of simulated 
dataset are summarized in Table1. Then we translated the 3D 
object by up to 15 units along 𝑥, 𝑦 and 𝑧 axis, and rotated it 
by up to 30 degrees around 𝑥 and 𝑦 axis, and up to 90 degrees 
around 𝑧  axis in Euclidean space. The simulated dataset 
consists of thousands of images. 

To simplify notation of experiment results, we named 
estimation methods based on decomposition of essential 
matrix as CV_EM, decomposition of homography matrix as 
CV_H, relative orientation as PM_RO and homography based 
relative orientation as PM_H.  

Firstly, we estimated motion parameters for real dataset. 
We checked the accuracy of the estimated rotation parameters 
around each axis for all datasets with comparing true (known) 
rotation parameters by analyzing their root mean square errors 
(RMSEs), absolute mean errors (MEs), maximum errors, and 
minimum errors produced from the proposed four methods as 
summarized in Table 2. For reference value, we manually 
measured corresponding features for every object in the image 
sequences, and their precise 3D motion was estimated. 

TABLE II.  COMPARISON OF ERROR ANALYSIS FOR REAL SCENE 

Comparison of Maximum Error /degrees/ 

Method PM_H CV_H CV_EM PM_RO 

𝝎 (𝟏°~ 𝟐𝟎°) 1.867 1.993 1.997 1.863 

𝝋 (𝟏° ~ 𝟐𝟎°) 1.596 1.731 1.723 1.711 

𝜿 (𝟏° ~ 𝟗𝟎° 0.892 0.757 1.728 1.721 

Comparison of Minimum Error /degrees/ 

𝝎 (𝟏°~ 𝟐𝟎°) 0.00014 0.000 0.013 0.0009 

𝝋 (𝟏° ~ 𝟐𝟎°) 0.00045 0.001 0.005 0.0004 

𝜿 (𝟏° ~ 𝟗𝟎° 0.0051 0.00 0.0003 0.0002 

Comparison of Mean Error /degrees/ 

𝝎 (𝟏°~ 𝟐𝟎°) 0.538 0.564 1.096 0.578 

𝝋 (𝟏° ~ 𝟐𝟎°) 0.346 0.403 0.871 0.620 

𝜿 (𝟏° ~ 𝟗𝟎° 0.391 0.312 0.677 0.408 

Comparison of RMS Error /degrees/ 

𝝎 (𝟏°~ 𝟐𝟎°) 0.685 0.717 1.199 0.718 

𝝋 (𝟏° ~ 𝟐𝟎°) 0.346 0.403 0.871 0.620 

𝜿 (𝟏° ~ 𝟗𝟎° 0.434 0.364 0.818 0.507 

 
As we can see in Table 2 that RMSEs of the rotation results 

were small and accurate for each four approaches. 
Particularly, in cases of real image sequences, planar 
homography methods such as PM_H and CV_H produced 
more negligible and comparable errors among four 
estimations since planar pattern was dominating in test 
dataset. Among them motion parameters from the estimation 
method as PM_H were especially more accurate for image 
sequences of the moving planar object. When matched feature 
correspondences were noisy, CV_E was very sensitive for it. 

Secondly, we checked accuracy of the motion parameters 
for simulated dataset. To compare performance of the four 
estimations for 3D motion we used the same measures as the 
real data case. The results of comparison are summarized in 
Table 3. 

As we see in Table 3 that the four estimations produced 
small errors in cases of the simulated datasets. Specifically, 

 
 

 



motion parameters from PM_RO were the most accurate than 
other three approaches.  

Combining the two cases, we observed that the approach, 
PM_H was producing more accurate results for real image 
sequences, and the approach, PM_RO was producing more 
accurate results for 3D object in simulated sequences. This 
implies that all four method tested worked successfully when 
decent corresponding features were provided. It was 
anticipated that the photogrammetric method based on relative 
orientation produced most accurate results as this method 
estimates rotational and positional parameters directly. On the 
other hands, the results with real data are very interesting. 
Homography based methods outperformed other essential 
matrix or relative orientation based methods regardless of 
computer vision or photogrammetric approaches under noisy 
situation. In particular, the observation that homography 
based photogrammetric method worked better than relative 
orientation based one supports the motivation of linking 
techniques in developed in photogrammetry and computer 
vision. 

TABLE III.  COMPARISON OF ERROR ANALYSIS FOR SIMULATED 

DATASET 

Comparison of Maximum Error /degrees/ 

Method PM_H CV_H CV_EM PM_RO 

𝝎(𝟏° ~ 𝟑𝟎°) 1.647 1.615 1.731 1.589 

𝝋(𝟏° ~ 𝟑𝟎°) 1.986 1.891 1.993 1.983 

𝜿(𝟏° ~ 𝟗𝟎°) 1.937 1.828 1.801 1.492 

Comparison of Minimum Error /degrees/ 

𝝎(𝟏° ~ 𝟑𝟎°) 0.015 0.009 0.013 0.003 

𝝋(𝟏° ~ 𝟑𝟎°) 0.005 0.01 0.025 0.012 

𝜿(𝟏° ~ 𝟗𝟎°) 0.014 0.016 0.007 0.013 

Comparison of Mean Error /degrees/ 

𝝎(𝟏° ~ 𝟑𝟎°) 0.549 0.498 0.762 0.461 

𝝋(𝟏° ~ 𝟑𝟎°) 0.648 0.647 0.71 0.629 

𝜿(𝟏° ~ 𝟗𝟎°) 0.684 0.556 0.605 0.519 

Comparison of RMS Error /degrees/ 

𝝎(𝟏° ~ 𝟑𝟎°) 0.68 0.632 0.933 0.581 

𝝋(𝟏° ~ 𝟑𝟎°) 0.818 0.801 0.878 0.798 

𝜿(𝟏° ~ 𝟗𝟎°) 0.811 0.645 0.736 0.603 

 
To assess real-time performance, we measured processing 

time of SIFT feature extraction and motion estimations by 
including RANSAC based elimination for large number of 
feature points. Processing time of SIFT feature extraction was 
speeding up in 0.2 seconds. For four estimations, processing 
time was around 0.0001 seconds. 

CONCLUSION 

In order to improve the robustness of the proposed 
methods in photogrammetry and computer vision, we tracked 
planar and non-planar objects in experiment level. The 
solution equations in photogrammetry were formulated as a 
non-linear least squares problem to obtain unique solution, 
and the equations in computer vision were formulated as 
linear solution to obtain the number of possible solutions. We 
estimated motion parameters by using different RANSAC 

based methods for each estimation. The results of estimations 
in both fields were accurate in high variation of translation and 
rotation change under favorable correspondences. For noisy 
situation, methods based on homography produced smaller 
errors. Processing speed was close to real-time processing. 
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