Улсын бүртгэлийн дугаар

.....

Нууцлалын зэрэглэл Б

Төсөл хэрэгжүүлэх газрын гэрээний дугаар:

ШИНЖЛЭХ УХААНЫ АКАДЕМИ ФИЗИК,ТЕХНОЛОГИЙН ХҮРЭЭЛЭН

10 ГЭВ/С ИМПУЛЬСТЭЙ ПРОТОН-ПРОТОН, ПРОТОН-ЦӨМИЙН ХАРИЛЦАН ҮЙЛЧЛЭЛҮҮДИЙН ФАЗЫН ШИЛЖИЛТИЙН СУДАЛГАА

Суурь, хавсарга судалгааны грант төслийн тайлан

2020-2022

Төслийн удирдагч:

Санхүүжүүлэгч байгууллага:

Захиалагч байгууллага:

Тайлан өмчлөгч:

Б.Отгонгэрэл, Доктор

Шинжлэх Ухаан, Технологийн Сан

Шинжлэх Ухааны Академи

ШУА, Физик, технологийн хүрээлэн Энхтайвны өргөн чөлө-54Б Улаанбаатар, 13330, Монгол улс

Улаанбаатар

2022

ГАРЧИГ

ОРШИЛ

4.2 ГЭВ/С БА 10 ГЭВ/С ИМПУЛЬСТЭЙ $(p + C \rightarrow p + X)$	
ҮИЛЧЛЭЛҮҮДИИН БАИ МАССЫН ХАМААРАЛ БА ФАЗЫН	1
шилжилт	
EXPERIMENTAL ESTIMATION OF THE LIGHT QUARK MASSES	

LAI ERIVIENTAL ESTIMATION OF THE EIGHT QUARK WASSES	
IN MULTIPARTICLE PRODUCTION PROCESSES AND THE	11
FLUCTUATION OF THE NUCLEAR MATTER	

ГОЛ,	ДҮГНЭЛ	ІТҮҮД
------	--------	-------

ОРШИЛ

Их энергитэй эгэл бөөм, цөмийн физик нь бодисыг бүрдүүлэгч материйн нарийн бүтэц, түүний шинж чанарыг судалдаг шинжлэх ухаан юм. Их энергийн физик нь бодисыг бүрдүүлэгч хамгийн жижиг хэсэг, тэдгээрийн хоорондын харилцан үйлчлэл, харилцан уялдааны хуулиудыг судалдаг. Их энергийн физикийн судалгаа нь олон үе шатыг дамжин өнөө үеийн хөгжлийн шатандаа ирсэн байдаг. Эхэн үедээ протон, нейтроны түвшинд нэвтрэн судлагдаж, цаашлаад мезон болон түүний богино настай резонансуудын төлвүүдийг нээж, тэдгээрийг судалснаар үргэлжилж байна.

Эгэл бөөмсийн бүтэцтэй холбоотой судалгаанууд 1960-аад оноос эхлэн эрчимтэй явагдаж эхэлсэн байдаг. Эрчимтэй явагдаж эхэлсэн гол хүчин зүйл нь эгэл бөөмсийг судлахад ашигладаг эгэл бөөмсийн хурдасгуурууд гол нөлөө үзүүлсэн.

Эгэл бөөмсийн хурдасгуур нь маш их өртөг өндөртэй, өндөр технологийн, нарийн тоног төхөөрөмжүүдийг ашигладаг. Хурдасгууруудыг зохион бүтээснээр материйн бүтцийг танин мэдэхэд чухал алхам болсон. Хурдасгуураар хурдасгагдсан эгэл бөөмсийн долгионы урт нь 10⁻¹⁴~10⁻¹⁵ см байдаг нь нуклонууд ба цөмийн дундаж хэмжээ 10⁻¹³-ээс бага зайнд хүрдэг учир харилцан үйлчлэлд орсон бөөмсийн дотоод бүтэц, шинж чанарыг судлах бололцоо өгдөг юм.

Хурдасгууруудын тусламжтайгаар явагдсан туршлагын болон онолын судалгаануудын үр дүнд эгэл бөөмс нь "кварк" хэмээх эгэл хэсгүүдээс тогтдог ба кваркуудын хоорондын харилцан үйлчлэлийг "глюон" хэмээх орон зөөдөг гэдгийг тогтоосон. Кваркан бүтэц нь тогтоогдсон протон, нейтрон ба мезонуудыг "Адрон" гэж нэрлэдэг. Үүнээс гадна бүтэц нь нарийн тогтоогдоогүй электрон, мюон, тау лептон зэрэг бөөмс байдаг бөгөөд эдгээрийг "Лептонууд" гэж нэрлэдэг.

Энэхүү судалгааны ажил нь хүчтэй харилцан үйлчлэлд хамаарна. Их энергитэй адрон-цөм, цөм-цөмийн харилцан үйлчлэлээр үүссэн температурын утга 200 МэВ буюу түүнээс их болоход кварк-глюоны плазм хэмээх маш өндөр температуртай шинэ төлөв үүснэ гэсэн квант хромодинамик онолын таамаглалтай шууд холбоотой юм. Хүчин чадал өндөртэй, супер компьютеруудын тусламжтайгаар хийгдсэн Монте Карло симуляцийн судалгаанууд нь кварк-глюоны плазмын төлөв байна гэдгийг баталдаг.

Их энергитэй протон-протон, протон-цөмийн харилцан үйлчлэлүүдээр олон бөөмс үүсэх процессын судалгааг хурдасгагдсан бөөмийн энерги, дамжуулагдсан дөрвөн хэмжээст импульсээс хамааруулан судлах нь эгэл бөөмс болон цөмийн дотоод кваркглюонон бүтэц ба фазын шилжилтийн процессыг судлах гол арга гэж үзэгддэг.

Энэхүү суурь хавсарга судалгааны грант төслийн ажилд 10 ГэВ/с импульстэй протон-протон, протон-цөм, 40 ГэВ/с импульстэй $\pi^- + C$, $\pi^- + p$, 4.2 ГэВ/с импульстэй протон-цөм, 205 ГэВ/с импульстэй протон-протон харилцан үйлчлэлүүдээр үүссэн хоёрдогч бөөмсийн хувьд фазын шилжилт болон кваркан бүтцийн шинж чанарын судалгааг явуулж 2 эрдэм шинжилгээний өгүүлэл хэвлүүлэв.

ТӨСЛӨӨР БИЙ БОЛОХ ҮР ДҮН

N⁰	Төслөөр бий болох үр дүн	Тоо хэмжээ	Үр дүнгийн	Үр дүнг
			үзүүлэлт	хүлээлгэн өгөх
				хугацаа
1	Их энергитэй бөөм-бөөм, бөөм-цөмийн харилцан үйлчлэлээр үүссэн хоёрдогч бөөмсийн хувьд кумулятив тоо хэмээх хувьсагч болон дамжуулагдсан импульсээс нь хамааруулан байн массын аргуудыг ашиглаж фазын шилжилтийн процесс болон кваркан бүтцийн шинж чанарын судалгаа явуулах.	ЭШӨ Дотоодод-1 Гадаадад-1	Шинэ үр дүнгүүд гарган авах.	2022 оны 12 сар
2	Судалгааны үр дүнгээр гадаад, дотодын мэргэжлийн сэтгүүлүүдэд 2-оос доошгүй өгүүлэл хэвлүүлнэ.	2	Эрдэм шинжилгээний өгүүлэл.	2022 оны 12 сар
3	Эрдэм шинжилгээний хурлуудад илтгэл хэлэлцүүлэх. Гадаадад 1, дотоодод 1.	2	Хуралд илтгэж хэвлүүлэх.	2022 оны 12 сар

4.2 ГЭВ/С БА 10 ГЭВ/С ИМПУЛЬСТЭЙ (*p* + *C* → *p* + *X*) ҮЙЛЧЛЭЛҮҮДИЙН БАЙ МАССЫН ХАМААРАЛ БА ФАЗЫН ШИЛЖИЛТ

Б.Отгонгэрэл, Ц.Баатар, Б.Батгэрэл, М.Совд, М.Урангуа, Г.Шархүү ШУА, Физик технологийн хүрээлэн Онолын ба их энергийн физикийн лаборатори

Удиртгал

Энэхүү ажилд 4.2 ГэВ/с ба 10 ГэВ/с импульстэй протон нүүрстөрөгчийн цөмтэй харилцан үйлчлэлүүдээс үүссэн хоёрдогч протонуудын хувьд фазын шилжилтийн процессыг судалсан ба температурыг бай массаас хамааруулан судлахад 4.2 ГэВ/с энергитэй үйлчлэлд T = 141 МэВ, 10 ГэВ/с энергитэй үед T = 186 МэВ орчимд тогтмол утга өгч байгаа нь анхдагч бөөмийн энергиэс хамаарч байгааг харуулаа.

Түлхүүр үгс: Бай масс, эффектив температур, фазын шилжилт

1. ОРШИЛ

Их энергитэй адрон-адрон (hh), адрон-цөм (hA), цөм-цөм (AA)-ийн харилцан үйлчлэлээр олон бөөмс үүсэх процессын судалгаа нь адроны ба цөмийн дотоод бүтэц, хүчтэй харилцан үйлчлэлийн механизм, нягт ихтэй төлөв байдал үүсэх механизмыг тодорхойлоход чухал ач холбогдолтой. Дээр дурьдсан үзэгдлүүд их энергитэй адрон-цөм, цөм-цөмийн харилцан үйлчлэлээр олон бөөмс үүсэх процессоор үүсвэл харилцан үйлчлэлийн динамик процесст хүчтэй нөлөө үзүүлэн, хоёрдогч бөөмсийн өнцгийн ба импульсийн түгэлтүүдэд ажиглагдах ёстой гэж зүй ёсоор үздэг. Их энергитэй адроннуклон (hA) ба нуклон-нуклоны (AA) харилцан үйлчлэлээр адрон-нуклоны үйлчлэлийн кинематикт захирагддаггүй, бай цөмөөс нэг нуклоны массаас илүү масс шаардагддаг хоёрдогч бөөмс үүсдэг бөгөөд эдгээрийг кумулятив бөөмс гэж нэрлэдэг [1]. Кумулятив бөөмсийг судлахад "кумулятив тоо" хэмээх хувьсагчийг ашиглахад илүү тохиромжтой [1]. Энэ ажилд бид 4.2 ГэВ/с болон 10 ГэВ/с импульстэй

$$p+C \to p+X$$

урвалыг авч үзлээ.

2. АШИГЛАСАН ХУВЬСАГЧУУД

2.1 Кумулятив тоо ба байн масс

Кумулятив тоо хэмээх хувьсагч (n_c) дараах томъёогоор илэрхийлэгддэг:

$$n_c = \frac{P_a \cdot P_c}{P_a \cdot P_b} = \frac{E_c - \beta_a P_{||}^c}{m_p} \tag{1}$$

Энд:

 P_a, P_b, P_c – хурдасгагдсан бөөм, бай цөм ба хоёрдогч бөөмсийн 4-хэмжээст импульсууд, $E_c, P_{||}^c$ – хоёрдогч бөөмсийн энерги ба дагуу импульс, β_a – бөмбөгдөгч (анхны) протоны харьцангуй хурд, m_p – протоны масс.

n_c хувьсагч нь хоёрдогч бөөмүүд үүсэхэд бай массаас шаардагдсан массын хэмжээг илэрхийлнэ.

n_c болон дамжуулагдсан импульс *t*-н холбоо нь дараах томъёогоор илэрхийлэгдэнэ.

$$t = -q^{2} = -(P_{a} - P_{c})^{2} = 2E_{a}(E_{c} - \beta_{a}P_{||}^{c}) - (m_{a}^{2} + m_{c}^{2})$$
(2)

Томъёо (1)-ээс

$$n_c \cdot m_p = E_c - \beta_a P_{||}^c \qquad (3)$$

$$t = -q^2 = -(P_a - P_c)^2 = 2E_a n_c m_p - (m_a^2 + m_c^2) \qquad (4)$$

Энэ томъёоноос харахад 4-хэмжээст дамжуулагдсан импульсийн квадрат нь хоёрдогч бөөм үүсэхэд шаардагдсан бай массын хэмжээгээр тодорхойлогдож байна. Бай масс гэдэг нь тухайн харилцан үйлчлэлд үүссэн хоёрдогч бөөмс үүсэхэд шаардагдах массын хэмжээ бөгөөд

$$m_t = n_c m_p \tag{5}$$

гэж тодорхойлогддог.

2.2 Эффектив температур

Өөр өөр интервалууд дахь хоёрдогч бөөмүүдийн хөндлөн энергийн спектр нь экпоненциал хуулиар илэрхийлэгддэг:

$$\frac{1}{2 \cdot E_t} \frac{\Delta N}{\Delta E_t} e^{-bE_t}, E_t = \sqrt{P_t^2 + m^2}$$
(6)

Энд эффектив температур *T* нь налуугийн параметр *b*-ийн урвуугаар тодорхойлогддог:

$$T = \frac{1}{b} \tag{7}$$

3. ТУРШЛАГЫН АРГА ЗҮЙ

ОХУ-ын ЦШНИ-ийн "Синхрофазотрон" хурдасгагч дээр 4.2 ГэВ/с болон 10 ГэВ/с импульстэй болтол хурдасгагдсан протонууд 2-метрийн пропан камерыг бөмбөгдсөнөөр туршлагын материалыг гаргаж авсан. Хөөст камерийн аргаар гаргаж авсан туршилтын гол давуу тал нь харилцан үйлчлэлээр үүссэн цэнэгт хоёрдогч бөөмсийг 4π геометрт бүртгэх боломжтойд оршдог. Мөрийн импульсийн хэмжилтийн дундаж алдаа ~ 12% бөгөөд өнцгийн хэмжилтийн нарийвчлал ~ 0.6% байдаг [2].

Бид p + C харилцан үйлчлэлээс үүссэн хоёрдогч протонуудыг судлах зорилт тавьлаа. Энэ ажилд 4.2 ГэВ/с импульстэй харилцан үйлчлэлийн хоёрдогч протонууд нь 23162, 10 ГэВ/с импульстэй харилцан үйлчлэлийн хоёрдогч протонууд нь 49703 байв.

4. 4.2 ГэВ/с ИМПУЛЬСТЭЙ *p* + *C* → *p* + *X* ХАРИЛЦАН ҮЙЛЧЛЭЛИЙН АНАЛИЗ

Энэ хэсэгт 4.2 ГэВ/с импульстэй р+С харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын m_t хувьсагчаас хамаарах хамаарлыг судаллаа.

 $p+C \rightarrow p+X$ (4.2GeV/c)

Зураг. 1 4.2 ГэВ/с импульстэй p + C харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын бай массын түгэлт

Зураг 1-ээс харахад хоёрдогч протонууд үүсэхэд шаардагдсан бай массын хамгийн бага утга нь 0.2 ГэВ-ээс эхлэж 3 ГэВ хүртэл үргэлжилж байна. Бай масс m_t -ийн утга хамгийн бага утгаасаа өсөхөд тухайн m_t -тэй бөөмсийн тоо буурч $m_t \approx 0.5 - 0.6$ ГэВ-ийн утганд

минимум өгч, үүний дараагаар $m_t > 0.6$ ГэВ-ээс ихтэй бөөмсийн тоо өсч $m_t \approx m_p$ үед максимум утгаа өгч, цаашид бууралт өгч $m_t \cong 3$ ГэВ хүртэл үргэлжилж байна.

Зураг. 2 n_c-ийн өөр интервалууд дахь хоёрдогч протонуудын хөндлөн энерги E_t-ийн спектр

Зураг 2-д n_c -ийн өөр, өөр интервалууд дахь хоёрдогч протонуудын хөндлөн энергийн E_t -ийн спектрүүдийг үзүүлэв. Зураг 2-оос налуугийн параметр *b*-г тодорхойлж, эффектив температурыг олсныг Хүснэгт 1-т харууллаа.

	n_c	N_p	m_t	b	Т
1	0.2-0.3	3202	0.2407 ± 0.0004026	-15.5 ± 0.3	64.156 ± 1.2417
2	0.3-0.4	2703	0.3256 ± 0.0005699	-8.268 ± 0.185	120.94823 ± 2.7062
3	0.4-0.5	2271	0.4207 ± 0.0006085	-7.619 ± 0.291	131.25082 ± 5.01299
4	0.5-0.6	1783	$0.5146 {\pm} 0.0006687$	-6.862 ± 0.181	145.730107 ± 3.84394
5	0.6-0.7	1789	0.6125 ± 0.0006649	-7.056 ± 0.216	141.7233 ± 4.33846
6	0.7-0.8	2099	0.7052 ± 0.000604	-7.206 ± 0.166	138.7732 ± 3.19682
7	0.8-0.9	2740	$0.7999 {\pm} 0.0005271$	-7.073 ± 0.156	141.3827 ± 3.11829
8	0.9-1.0	2634	0.8894 ± 0.0005422	-6.995 ± 0.127	142.9592 ± 2.59554
9	1.0-1.3	3550	1.036 ± 0.001191	-5.148 ± 0.123	194.2501 ± 4.64117
10	1.3-1.4	198	1.26 ± 0.001764	-4.706 ± 0.302	212.4946 ± 13.6365
11	1.4-1.5	90	1.357 ± 0.00282	-3.39 ± 0.34	294.9852 ± 29.58553
12	1.5-3	99	1.643 ± 0.03104	-2.883 ± 0.298	346.8609 ± 35.8531

Хүснэгт 1 4.2 ГэВ/с импульстэй p + C харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын хувьд n_c хувьсагчийн интервалын утга, бай масс, налуугийн параметр b, температур T

 $p{+}C \rightarrow p{+}X \; (4.2 \; GeV/c)$

Зураг. 3 4.2 ГэВ/с импульстэй p + C харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын температур бай массаас хамаарах хамаарал

Зураг 3-д 4.2 ГэВ/с импульстэй p + C харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын температур бай массаас хамаарах хамаарлыг харууллаа. Энд $m_t \leq 0.5$ үед

эффектив температур өсөөд, $0.5 \le m_t \le 0.9$ хооронд температур нь 141 МэВ орчим тогтмол байгаа бөгөөд $m_t \le 0.9$ үед дахин өсөж байна. Эффектив температур тогтмол байх завсарт адроны төлвөөс кварк-глюоны плазмын төлөврүү шилжих фазын шилжилт явагдаж байна гэж үздэг [6, 7]. Өөрөөр хэлбэл, Зураг 3 нь 4.2 ГэВ/с импульстэй p + C харилцан үйлчлэлээр үүссэн хоёрдогч бөөмс үүсэхдээ бай цөмөөс тодорхой тооны масс шаардагдаж үүсэх бөгөөд бай массын хэмжээ өсөхөд хоёрдогч протонуудын температур эхэндээ өсч бай массын утга тухайн бөөмийн хагас масстай тэнцэх үеэс $(m_p/2)$ эхлэн температурын утга ойролцоогоор $m_t \cong m_p$ хүртэл тогтмол утга өгч түүний дараа дахин өсч байна. 4.2 ГэВ/с импульстэй $p + C \rightarrow p + X$ харилцан үйлчлэлд хоёрдогч протон үүсэх эффектив температурын утга $m_t < m_p/2, m_p/2 < m_t < m_p$ ба $m_t > m_p$ гэсэн 3 мужид хуваагдаж байна.

5. 10 ГэВ/с ИМПУЛЬСТЭЙ $p + C \rightarrow p + X$ ХАРИЛЦАН ҮЙЛЧЛЭЛИЙН АНАЛИЗ

10 ГэВ/с импульстэй *p* + *C* харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын m_t хувьсагчаас хамаарах хамаарлыг үзүүллээ.

 $p+C \rightarrow p+X (10 \text{GeV/c})$

Зураг. 4 10 ГэВ/с импульстэй p + C харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын бай массын түгэлт

Зураг 4-өөс харахад 10 ГэВ/с импульстэй *p* + *C* харилцан үйлчлэлээр үүссэн хоёрдогч протонууд үүсэхэд шаардагдсан бай массын хамгийн бага утга нь 0.08 ГэВ-ээс эхэлж 3 ГэВ хүртэл үргэлжилж байна. 10 ГэВ/с импульстэй *p* + *C* үйлчлэлээр үүссэн протонуудын бай цөмөөс шаардагдсан массын минимум утга нь 4.2 ГэВ/с

импульсийнхтэй харьцуулахад ~2 дахин бага байна. Энэ нь анхдагч протонуудын энергийн ялгаатай шууд холбоотой юм. Бай масс m_t -ийн утга өсөхөд тухайн m_t утгатай бөөмсийн тоо буурч $m_t \sim 0.5 - 0.6$ утганд минимум өгч үүний дараагаар $m_t \ge 0.6$ мужид бөөмийн тоо өсч $m_t \approx m_p$ үед максимум утга өгч цаашид $m_t > m_p$ утгатай бөөмийн тоо буурч $m_t \approx 3$ хүртэл үргэлжилж байна.

Зураг. 5 п_с-ийн өөр интервалууд дахь хоёрдогч протонуудын хөндлөн энерги E_t-ийн спектр

Зураг 5-д n_c -ийн өөр интервалууд дахь хоёрдогч протонуудын хөндлөн энерги E_t -ийн спектрийг томъёо (6)-р тодорхойлж налуугийн параметр b болон эффектив температур T-г тодорхойлсныг Хүснэгт 2-т харууллаа.

	n_c	N_p	m_t	b	Т
1	0.08-0.2	7186	0.1249 ± 0.0003433	-11.53 ± 0.15	86.7303 ± 1.12832
2	0.2-0.3	4745	0.2307 ± 0.0004151	-7.034 ± 0.115	142.167 ± 2.3243
3	0.3-0.4	4578	0.3285 ± 0.0004201	-5.947 ± 0.144	168.152 ± 4.07161
4	0.4-0.5	4007	0.4202 ± 0.0004418	-5.464 ± 0.131	183.016 ± 4.38783
5	0.5 - 0.7	6132	0.5754 ± 0.0008659	-5.25 ± 0.08	190.476 ± 2.9024
6	0.7-0.9	8446	0.765 ± 0.000597	-5.401 ± 0.071	185.151 ± 2.43394
7	0.9-1.2	12334	0.968 ± 0.0006956	-5.407 ± 0.057	184.945 ± 1.949669
8	1.2-1.3	1246	1.167 ± 0.0007896	-5.255 ± 0.159	190.295 ± 5.75774
9	1.3-1.4	479	1.26 ± 0.001199	-4.296 ± 0.185	232.775 ± 10.024
10	1.4-3	548	1.481 ± 0.00815	-3.795 ± 0.155	263.504 ± 10.7623

Хүснэгт 2 10 ГэВ/с импульстэй p + C харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын хувьд n_c хувьсагчийн интервалын утга, бай масс, налуугийн параметр b, температур T

Зураг 6-д хоёрдогч протонуудын температурыг бай массаас хамаарах хамаарлыг харууллаа.

Зураг. 6 10 ГэВ/с импульстэй p + C харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын температур бай массаас хамаарах хамаарал

Зураг 6-д $m_t \ge 0.5$ буюу $m_p/2$ үед адрон өдөөгдсөн төлөвт орж эффектив температур өсөөд $0.5 \le m_t \le 0.9 \ (m_p/2 < m_t < m_p)$ үед температурын утга ~186 МэВ тогтмол байх энэ мужид адроны төлөв болон кварк-глюоны плазмын төлөв гэсэн холимог төлөвт ороод $m_t \ge 0.9 \ (m_t > m_p)$ байх үед температурын утга дахин өсч байна.

ДҮГНЭЛТ

- 4.2 ГэВ/с болон 10 ГэВ/с импульстэй *p* + *C* харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын хувьд бай массын утга өсөх тусам адроны төлвөөс адрон болон кварк-глюоны плазмын холилдсон төлөвт, дараагаар нь цэвэр кварк-глюоны плазмын төлөврүү шилжиж байна гэж үзэж байна.
- Өмнө явуулсан онолын ба туршлагын судалгаагаар дээр дурьдсан 3 муж тус бүрийг дараах байдлаар тайлбарладаг [3, 4, 5]. Үүнд:
 - Бай массын хэмжээ өсөхөд эффектив температур өсч байгаа эхний муж нь $(m_t < m_p/2)$ адрон өдөөгдсөн төлөвт орж түүний температур өснө.
 - Температур нь тогтмол утга өгч байгаа 2-р мужид (m_p/2 < m_t < m_p) адроны төлвөөс түүнийг бүрдүүлэгч кварк, глюоны төлөвт шилжих фазын шилжилтийн процесс явагдана. Энэ мужид температур тогтмол байгаа нь гаднаас өгч байгаа энергийн хэмжээ тухайн адроныг түүний бүрэлдэхүүн хэсгүүдэд задлахад зарцуулагддаг онцлогтой юм.
 - Бай массын утга (m_t > m_p) 3-р мужид температурын утга дахин өсч байна.
 Энэ муж нь цэвэр кварк-глюоны плазмын төлөвт харгалзана гэж үздэг.
 Бидний явуулсан 2 туршилтын судалгааны үр дүн дээр дурдсан онол ба туршлагын үр дүнтэй тохирч байгаа нь тухайн харилцан үйлчлэлүүдэд фазын шилжилтийн процесс явагдаж байна гэдгийг харуулж байна.
- 4.2 ГэВ/с болон 10 ГэВ/с импульстэй p + C харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын хувьд анхдагч энергиэс шалтгаалж температурын тогтмол утга нь 4.2 ГэВ/с импульстэй харилцан үйлчлэлийн хувьд ~141 МэВ орчим, 10 ГэВ/с импульстэй харилцан үйлчлэлийн хувьд ~186 МэВ орчим буюу өөр өөр утгатай байна.

АШИГЛАСАН НОМ

- [1] Baldin A.M. Particles and Nuclei, 1977, V.8 p.429
- [2] Гаспарян А.П. Препринт ОИЯИ, 1980, 1-80-778, Дубна.
- [3] Ц.Баатар ба бусад., Е1-2012-13 ЦШНИ (2012 он) ОХУ, Дубна хот.

[4] Ц.Баатар ба бусад., "10 ГэВ/с импульстэй р + С үйлчлэлээр үүссэн бай цөмийн протонууд кумулятив тоо хэмээх хувьсагчаас хамаарах нь", Улаанбаатар хот, 2016 он.

[5] Ц.Баатар ба бусад., "4.2 ГэВ/с импульстэй р + С үйлчлэлээр үүссэн бай цөмийн протонууд кумулятив тоо хэмээх хувьсагчаас хамаарах нь", Улаанбаатар хот, 2016 он.

[6] K. Rajagopal, F.Wilczek, arxiv:hep-ph/0011333 V.2 13 December 2000.

[7] Rischke Dirk H. arxiv:nucl-th/0305030 V.2.

EXPERIMENTAL ESTIMATION OF THE LIGHT QUARK MASSES IN MULTIPARTICLE PRODUCTION PROCESSES AND THE FLUCTUATION OF NUCLEAR MATTER

B. Otgongerel^{1,2}, Ts. Baatar¹, M. Sovd^{1,2}, M. Urangua¹

¹Institute of Physics and Technology, MAS, Ulaanbaatar Mongolia

²Joint Institute for Nuclear Research, Dubna, Russia

Abstract

This paper is devoted to π^- meson production in p + p at 205 GeV/c, $\pi^- + p$ and $\pi^- + C$ at 40 GeV/c, p + C at 4.2 GeV/c and 10 GeV/c interactions using the target mass method. Some obtained results are compared with the theoretical predictions.

1 INTRODUCTION

Investigations of the multiparticle production processes in hadron-nucleon (hN), and hadron-nucleus (hA) and nucleus-nucleus (AA) interactions at high energies and large momentum transfers play a very important role in understanding the strong interaction mechanism and the inner quark-gluon plasma structure of nuclear matter.

The description of the quarks and gluons inside hadrons and nucleus remains an important problem of elementary particle physics. The strong interaction theory, quantum chromodynamics (QCD) gives an opportunity to investigate quark interactions at small distances by using the perturbation theory.

In multiparticle production processes at high energies the secondary particles are produced at different scattering angles with different values of momenta. Values of the scattering angle and momentum are mainly described by the square of 4-dimensional transferred momentum q^2 .

Furthermore, the theoretical characteristics of the multiparticle production processes, such as the strong interaction running coupling constant $\alpha_S(q^2)$ and the propagator are described also by q^2 . So, we would like to stress that the square of the transferred momentum, q^2 is one of the important characteristics for understanding the dynamics of the multiparticle production processes at high energies.

It is well known that in hA and AA collisions at high energies and large momentum transfers in comparison with hN interactions, the secondary particles are produced in the region kinematically forbidden for hN interactions. These particles are called cumulative because the production of these particles requires more than one nucleon mass from the target.

On the other hand, it is well known that the nucleon consists of three light quarks (p = uud and n = ddu). This fact gives us the possibility to observe the collective phenomenon in which

more than one quark mass (two or three quark masses) participate in the interaction process from the target even in the hN interactions.

This paper is devoted to the study of π^- meson production in *hN* and *hA* interactions at high energies using the target mass method.

2 EXPERIMENTAL METHOD

The experimental material was obtained using the Dubna 2-meter propane (C_3H_8) bubble chamber exposed to π^- mesons with a momentum of 40 GeV/c from the Serpukhov accelerator. The advantage of the bubble chamber experiment in this paper is that the distributions are obtained under the condition of 4π geometry of the secondary particles.

The average error of the momentum measurement is ~12%, and the average error of the angular measurements is ~0.6%. The average boundary momentum from which π^- mesons are detected in a propane bubble chamber is ~70 MeV/c. So, π^- mesons with a momentum from ~0.070 to 40 GeV/c are used in our distributions. In this paper we have taking the following reactions:

•	$p + p \rightarrow \pi^- + X$	(1)
•	$\pi^- + p \rightarrow \pi^- + X$	(2)
•	$\pi^- + C \to \pi^- + X$	(3)
•	$p + C \rightarrow \pi^- + X$	(4)

5025 p + p events with 12095 π^- mesons at 205 GeV/c, 9927 $\pi^- + p$ events with 25485 π^- mesons at 40 GeV/c, 8791 $\pi^- + C$ events with 30162 π^- mesons at 40 GeV/c, 10774 p + C events with 3811 π^- mesons at 4.2 GeV/c and 16428 p + C events with 17299 π^- mesons at 10 GeV/c have been used in the experimental distributions.

3 THE THEORETICAL UNDERSTANDING OF THE LIGHT QUARK RUNNING MASSES

According to the quark model there are two different kinds of quarks: constituent quark and current quark (or the bare quark). Hadrons are built from the constituent quarks. The constituent quark has the complicated structure. The complicated structure of the constituent quark arises on the basis of the current quark.

The scale dependence (energy dependence) of the quark mass reflects the fact that a bare quark is surrounded by a cloud of gluons and quark-antiquark pairs. Energy of the cloud contained in a sphere of radius r increase with r [5].

Assuming $m_p = 3m_q$, masses of the gluon clouds of the *u* and *d* quarks are approximately 300 MeV and the different theoretical estimations [4]-[8] give the following values of the light quark masses:

$$m_u \cong 5[MeV] + 300[MeV] \cong 305[MeV]$$

 $m_d \cong 7[MeV] + 300[MeV] \cong 307[MeV]$

In papers [1, 2] a hypothesis was proposed that the transfer of a large momentum to a complex system of nucleons, as a whole, can be realized only if at the momentum of collision with an incident nucleon, a group of nucleons of the nucleus, due to quantum fluctuations, is collected in a small volume and perceives the transmitted momentum as a single particle with mass $M_k = k \cdot m$ (*m* is tha mass of the nucleon, *k* is the number of nucleons in the group). Such a multinucleon formation is called "flucton". This mechanism for the formation of fluctons does not contradict with modern ideas about the structures of particles (or nuclei), and the fluctons themselves should be considered at the quark level. This enables us to study multiquark systems.

4 VARIABLES USED IN THE ANALYSIS

4.1 THE CUMULATIVE NUMBER n_c AND TARGET MASS m_{tg}

The relativistic invariant variable n_c called the cumulative number is determined by the following formula [3];

$$n_c = \frac{P_a P_c}{P_a P_b} = \frac{E_c - \beta_a P_c^{||}}{m_p} \tag{5}$$

where P_a , P_b , P_c are the four-dimensional momenta of the projectile, target and secondary particles under consideration; E_c and $P_c^{||}$ are the energy and the longitudinal momentum of the secondary particles; β_a is the velocity of the incident particle; m_p is the proton mass. From formula (5) we have determined the value of the target mass m_{tg} by the following formula;

$$m_{tg} = m_p n_c \tag{6}$$

Formula (6) shows that the target mass m_{tg} is essentially changed in dependence on the cumulative number n_c . Such kind of the changeable mass is called the running mass [4].

4.2 THE FOUR-DIMENSIONAL TRANSFERRED MOMENTUM SQUARE q^2 AND THE TARGET MASS

The four-dimensional transferred momentum square q^2 is determined by the following formula;

$$t = -q^{2} = -(P_{a} - P_{c})^{2} = 2E_{a}(E_{c} - \beta_{a}P_{c}^{||}) - (m_{a}^{2} + m_{c}^{2})$$
(7)

where m_a is the mass of the incident particle and m_c is the mass of the secondary particle under consideration. The other notations are the same as in subsection 4.1.

Formula (7) may be written in the following form using formula (6);

$$q^2 = 2E_a m_p n_c - (m_a^2 + m_c^2)$$
(7')

We note that formula (7') gives the explicit dependence on the target mass, $m_{tg} = m_p n_c$ which is needed from the target to produce the secondary particle under consideration, i.e. This formula gives the explicit form of the mass dependence of q^2 [10].

In calculating the value of the q^2 by formula (7') in the case of the reaction $p + p \rightarrow \pi^- + X$ at 205 GeV/c 911 π^- mesons are produced with the negative masses indicating the unphysical nature. These pions produced with approximately $m_{tg} \leq -0.00022$ GeV are excluded from the total number of pions. This procedure gives some difference between experimental data at 40 and 205 GeV/c.

From formula (7') we can determine the target mass $m_{tg} = m_p n_c$ by following formula;

$$m_{tg} = m_p n_c = \frac{q^2 + (m_a^2 + m_c^2)}{2E_a}$$
(5')

Formula (5') shows that the target mass m_{tg} is expressed by q^2 and E_a . This formula shows that the target mass m_{tg} is inversely proportional to the energy of the incident particle E_a and is proportional to the q^2 . So, this means that to obtain the small values of the target mass which is comparable with the theoretical estimations of the bare quark mass (4÷7) MeV, we must to increase the energy of the incident particle E_a and then simultaneously we obtain the extended to small and large values of q^2 .

5 TARGET MASS m_{tg} DISTRIBUTIONS

The target mass distributions of π^- mesons from reactions (1), (2) and (3) are presented in Fig.1a, Fig.3a and Fig.5a. From these figures we see that these distributions give their maximum at small values of the variable m_{tg} and then the number of particles essentially decreases with increasing of m_{tg} in all interactions. We note that m_{tg} distribution in $p + p \rightarrow$ $\pi^- + X$ at 205 GeV/c and $\pi^- + p \rightarrow \pi^- + X$ at 40 GeV/c are continued until $m_{tg} \cong 0.7 - 0.8$ GeV, and only in the case of $\pi^- + p \rightarrow \pi^- + X$ at 40 GeV/c is continued until ~5 GeV.

5.1 LOG-NORMAL DISTRIBUTION

The log-normal distribution is defined as.

$$p_{ln}(m_{tg}|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} \frac{1}{m_{tg}} \exp\left(-\frac{\left(\ln m_{tg} - \mu\right)^2}{2\sigma^2}\right)$$
(8)

Where μ and σ^2 are the mean and variance. Properties of the log-normal distribution

$$\mu = \exp\left(\mu - \frac{1}{2}\sigma^2\right)$$
(9)
$$\sigma^2 = (\exp(\sigma^2 - 1))\exp(2\mu + \sigma^2)$$
(10)

The mode is the point of global maximum of the probability density function.

Fig. 1 Target mass distribution (m_{tg}) of π^- mesons for p + p interactions at 205 GeV/c (a) and the average value of m_{tg} distribution in the first Δm_{tg} interval, $\langle m_{tg} \rangle = 4.77 \pm 0.04$ [MeV] (b).

Fig. 2 Black points are experimental data, solid red line is log-normal distribution Eq.(8). and black dashed line is Mode Eq.(11).

Fig. 3 Target mass distribution (m_{tg}) of π^- mesons for $\pi^- + p$ interactions at 40 GeV/c (a) and the average value of m_{tg} distribution in the first Δm_{tg} interval, $\langle m_{tg} \rangle = 5.12 \pm 0.03$ [MeV] (b).

Fig. 4 Black points are experimental data, solid red line is log-normal distribution Eq.(8). and black dashed line is Mode Eq.(11).

Fig. 5 Target mass distribution (m_{tg}) of π^- mesons for $\pi^- + C$ interactions at 40 GeV/c (a) and the average value of m_{tg} distribution in the first Δm_{tg} interval, $\langle m_{tg} \rangle = 5.05 \pm 0.04$ [MeV] (b).

Fig. 6 Black points are experimental data, solid red line is log-normal distribution Eq.(8). and black dashed line is Mode Eq.(11).

Distributions of the target mass m_{tg} of π^- mesons in p + C at 4.2 GeV/c are shown on Fig.7a, Fig.7b and the corresponding distributions for p + C at 10 GeV/c are shown on Fig.8a, Fig.8b. These distributions show that m_{tg} distribution have the similar behaviors as in 40 GeV/c and 205 GeV/c interactions. We note that to establish the minimal values of the target mass from which the production of π^- mesons is observed in p + C interactions at 4.2 GeV/c and 10 GeV/c, the target mass distributions in the m_{tg} interval from zero to 40 MeV with Δm_{tg} =4 MeV are given on every corresponding distribution with notation "b". These figures show that in these interactions at 4.2 GeV/v and 10 GeV/c, π^- mesons are produced from the values $m_{tg} \approx 0.030$ and $m_{tg} \approx 0.15$ GeV. Consequently at these comparably small energies in difference at high energy cases, we have no possibility to estimate the current light quark masses, but we can give the mass distributions participated in the interaction from the clouds surrounding the current quarks.

Fig. 7 Target mass distribution (m_{tg}) of π^- mesons from p + C at 4.2 GeV/c (a) and the first Δm_{tg} interval (b).

Fig. 8 Target mass distribution (m_{tg}) of π^- mesons from p + C at 10 GeV/c (a) and the first Δm_{tg} interval (b).

6 **DISCUSSIONS OF THE RESULTS**

6.1 TARGET MASS DISTRIBUTIONS IN THE FIRST Δm_{ta} INTERVALS AND **ESTIMATION OF THE LIGHT QUARK MASSES**

The target mass distributions in the first Δm_{ta} intervals of reactions (1), (2) and (3) are presented in Fig.1b, Fig.3b and Fig.5b.

As mentioned in the subsection 4, to obtain the small target mass values comparable with the theoretical estimation ($m_u \cong 5 \text{ MeV}, m_d \cong 7 \text{ MeV}$) of the bare light quarks we consider in the first Δm_{tg} interval of the m_{tg} distributions. The average value of m_{tg} distribution in the first Δm_{tg} interval $0.0 < m_{tg} < 10$ MeV in every interaction give the comparable values of the bare light quark masses.

The average values of the target mass in the first Δm_{tq} intervals which give the bare light quark masses in every interaction are given in Table 1.

	$m_q^0 = \langle m_{tg} \rangle$						
	$\Delta m_{tg}, [\text{MeV}]$	$p + p \rightarrow \pi^- + X$	$\pi^- + p \to \pi^- + X$	$\pi^- + C \to \pi^- + X$			
		(205 GeV/c)	(40 GeV/c)	(40 GeV/c)			
1	$0.0 \div 0.008$	4.03 ± 0.03	4.20 ± 0.03	4.38 ± 0.03			
2	$0.0 \div 0.009$	4.38 ± 0.04	4.65 ± 0.03	4.60 ± 0.03			
3	$0.0 \div 0.010$	4.71 ± 0.04	5.12 ± 0.03	5.05 ± 0.04			
4	$0.0 \div 0.011$	5.06 ± 0.04	5.60 ± 0.03	5.49 ± 0.04			
5	$0.0 \div 0.012$	5.41 ± 0.04	6.05 ± 0.04	5.95 ± 0.04			

T 11	1
Table	
10010	. .

We note that the maxima of the target mass distributions of π^- mesons from reactions (1), (2) and (3) are at very beginning of the distributions (see Fig 2, Fig.4 and Fig.6). On the other hand, these m_{ta} values correspond to high energy particles.

This experimental result gives us the possibility to propose that the maximum of every distribution corresponds to the bare light quark masses:

- $m_t^{max} = 4.71 MeV (p + p)$ $m_t^{max} = 5.12 MeV (\pi^- + p)$
- $m_t^{max} = 5.05 MeV (\pi^- + C)$

6.2 DEPENDENCES OF THE AVERAGE ENERGIES $\langle E_{\pi^-} \rangle$ OF π^- MESONS AS A FUNCTION OF THE TARGET MASS m_{ta}

Dependences of the average energies $\langle E_{\pi^-} \rangle$ of π^- mesons from interactions (1), (2) and (3) are presented on Fig.9, Fig.10 and Fig.11. These figures show that with increasing of the variable m_{tg} the average energies $\langle E_{\pi^-} \rangle$ of π^- mesons in the beginning systematically decrease and then reach the minimum values at $m_{tg} \sim 0.302$ GeV for $p + p \rightarrow \pi^- + X$ interactions at 205 GeV/c, at $m_{tg} \cong 0.290$ GeV for $\pi^- + p \rightarrow \pi^- + X$ interactions at 40 GeV/c, at $m_{tg} \cong$ 0.303 GeV for $\pi^- + C \rightarrow \pi^- + X$ interactions at 40 GeV/c, at $m_{tg} \cong 0.304$ GeV for $p + C \rightarrow$ $\pi^- + X$ interactions at 4.2 GeV/c and at $m_{tg} \cong 0.303$ GeV for $p + C \rightarrow \pi^- + X$ interactions at 10 GeV/c and then increase. We would like to note that the target mass values which give the minimum at five different interactions are very close to each other and approximately equals to $\langle m_{tg}^{min} \rangle \sim 0.3$ GeV and this value of the target mass is consistent with the theoretical estimation of the light constituent quark masses mentioned in subsection 3.

The total number of events, π^- mesons and number of π^- mesons with $m_{tg} > 0.3$ GeV are given in Table 2.

Table 2.

Interactions	Nevent	$N_{\pi^{-}}$	N_{π^-} with $m_{tg} > 0.3$, [GeV]	%
$p + p \rightarrow \pi^- + X$, at 205 [GeV/c]	5025	12095	88	0.7
$\pi^- + p \rightarrow \pi^- + X$, at 40 [GeV/c]	9952	25485	303	1.17
$\pi^- + C \rightarrow \pi^- + X$, at 40 [GeV/c]	8791	30162	1338	4.4
$p + C \rightarrow \pi^- + X$, at 4.2 [GeV/c]	10775	3811	469	12.3
$p + C \rightarrow \pi^- + X$, at 10 [GeV/c]	16428	17299	1866	10.7

Table 2 shows that the number of π^- mesons with $m_{tg} > 0.3$ GeV in $p + p \rightarrow \pi^- + X$ and $\pi^- + p \rightarrow \pi^- + X$ reactions are approximately ~1% and in $\pi^- + C \rightarrow \pi^- + X$ interactions, this number is 4÷5 times more than in hN interactions.

Fig. 9 Dependences of the average values of energies $\langle E_{\pi^-} \rangle$ as a function of the target mass m_{ta} for reaction (1).

Fig. 10 Dependences of the average values of energies $\langle E_{\pi^-} \rangle$ as a function of the target mass m_{tg} for reaction (2).

Fig. 11 Dependences of the average values of energies $\langle E_{\pi^-} \rangle$ as a function of the target mass m_{ta} for reaction (3).

Now we consider the region with $m_{tg} > 0.3$ GeV. We note that in this region more than one quark mass is needed from the target to produce the secondary π^- mesons. We would like to stress that this is the main difference of this region in comparison with the region with $m_{tg} \leq 0.3$ GeV. So, the increasing of the average energies $\langle E_{\pi^-} \rangle$ of π^- mesons in this region presumably are connected with the appearance of the collective phenomenon in which more than one quark mass is required from the target.

Fig. 12 Dependences of the average values of energies $\langle E_{\pi^-} \rangle$ as a function of the target mass m_{ta} for reaction (4).

Fig. 13 Dependences of the average values of energies $\langle E_{\pi^-} \rangle$ as a function of the target mass m_{ta} for reaction (4).

Dependences of the average values of energies $\langle E_{\pi^-} \rangle$ of π^- mesons from interactions $p + C \rightarrow \pi^- + X$ at 4.2 GeV/c is presented on Fig.12. The same dependence for interactions at 10 GeV/c is presented on Fig.13. These figures show the similar behaviors as in 40 and 205 GeV/c interactions with minimum at $\langle m_{tg} \rangle \sim 0.3$ GeV.

In addition, this result tells us that in these interactions (1), (2) and (3) the collective phenomenon occurs at the quark level.

The total number of π^- mesons, average values of the variable m_{tg} and average values if energies in every Δm_{tg} intervals for reactions (1), (2), (3) and (4) are given in Table 3, Table 4, Table 5, Table 6 and Table 7 correspondingly.

	Δn_c	N	$\langle n_c \rangle$	$\langle m_{tg} \rangle$, [GeV]	$\langle E_{tot} \rangle$, [GeV]
1	$0.0 \div 0.01$	3285	0.0057	0.0053	14.13 ± 0.3144
2	$0.01 \div 0.02$	2137	0.0145	0.0136	7.453 ± 0.2688
3	$0.02 \div 0.03$	1279	0.0246	0.0231	4.617 ± 0.2288
4	$0.03 \div 0.04$	819	0.0348	0.0327	3.892 ± 0.3242
5	$0.04 \div 0.05$	623	0.0446	0.0419	2.668 ± 0.1337
6	$0.05 \div 0.06$	452	0.0546	0.0512	2.598 ± 0.1717
7	$0.06 \div 0.07$	379	0.0648	0.0608	2.508 ± 0.2200
8	$0.07 \div 0.08$	274	0.0746	0.0700	2.001 ± 0.1752
9	$0.08 \div 0.09$	262	0.0848	0.0795	1.695 ± 0.1213
10	$0.09 \div 0.1$	178	0.0948	0.0890	1.660 ± 0.1277
11	$0.1 \div 0.15$	695	0.1221	0.1145	1.408 ± 0.0761
12	$0.15 \div 0.2$	348	0.1726	0.1620	0.997 ± 0.0586
13	$0.2 \div 0.25$	186	0.2236	0.2108	0.985 ± 0.0991
14	$0.25 \div 0.3$	114	0.2729	0.2561	0.853 ± 0.0761
15	$0.3 \div 0.35$	69	0.3225	0.3026	0.614 ± 0.0628
16	$0.35 \div 0.4$	38	0.3714	0.3485	0.677 ± 0.0738
17	$0.4 \div 1.0$	$\overline{50}$	0.4872	0.4572	1.231 ± 0.5477

Table 3 for $p + p \rightarrow \pi^- + X$ at 205 GeV/c.

Table 4 for $\pi^- + p \rightarrow \pi^- + X$ at 40 GeV/c.

	Δn_c	Ν	$\langle n_c \rangle$	$\langle m_{tg} \rangle$, [GeV]	$\langle E_{\pi^-} \rangle$, [GeV]
1	$0.0 \div 0.01$	6333	0.0051	0.0048	13.57 ± 0.1439
2	$0.01 \div 0.02$	4923	0.0147	0.0138	6.537 ± 0.1043
3	$0.02 \div 0.03$	3152	0.0247	0.0232	4.757 ± 0.1022
4	$0.03 \div 0.04$	2134	0.0347	0.0326	3.744 ± 0.0984
5	$0.04 \div 0.05$	1492	0.0448	0.0421	3.166 ± 0.1047
6	$0.05 \div 0.06$	1149	0.0548	0.0514	2.826 ± 0.1158
7	$0.06 \div 0.07$	906	0.0651	0.0610	2.587 ± 0.1327
8	$0.07 \div 0.08$	745	0.0750	0.0701	2.320 ± 0.1174
9	$0.08 \div 0.09$	609	0.0850	0.0797	2.083 ± 0.1451
10	$0.09 \div 0.1$	525	0.0950	0.0891	1.712 ± 0.1148
11	$0.1 \div 0.15$	1603	0.1221	0.1146	1.472 ± 0.0523
12	$0.15 \div 0.2$	877	0.1728	0.1621	1.197 ± 0.0598
13	$0.2 \div 0.275$	641	0.2235	0.2191	1.020 ± 0.0572
14	$0.275 \div 0.35$	355	0.3091	0.2901	0.887 ± 0.0944
15	$0.35 \div 0.5$	229	0.4122	0.3868	0.921 ± 0.1043
16	$0.5 \div 1.0$	74	0.5911	0.5547	1.102 ± 0.2745

	Δn_c	Ν	$\langle n_c \rangle$	$\langle m_{tg} \rangle$, [GeV]	$\langle E_{\pi^-} \rangle$, [GeV]
1	$0.0 \div 0.01$	4864	0.0053	0.0051	11.42 ± 0.1552
2	$0.01 \div 0.02$	4488	0.0147	0.0138	5.578 ± 0.0979
3	$0.02 \div 0.03$	3297	0.0247	0.0232	4.057 ± 0.0888
4	$0.03 \div 0.04$	2482	0.0347	0.0326	3.247 ± 0.0879
5	$0.04 \div 0.05$	1844	0.0448	0.0421	2.859 ± 0.0960
6	$0.05 \div 0.06$	1477	0.0548	0.0514	2.315 ± 0.0871
7	$0.06 \div 0.07$	1248	0.0651	0.0610	2.153 ± 0.1095
8	$0.07 \div 0.08$	1102	0.0749	0.0703	1.812 ± 0.0884
9	$0.08 \div 0.09$	837	0.0850	0.0797	1.646 ± 0.0771
10	$0.09 \div 0.1$	766	0.0947	0.0888	1.43 ± 0.0777
11	$0.1 \div 0.15$	2642	0.1225	0.1149	1.306 ± 0.0463
12	$0.15 \div 0.2$	1555	0.1720	0.1641	1.046 ± 0.0520
13	$0.2 \div 0.25$	1005	0.2234	0.2096	0.9745 ± 0.0681
14	$0.25 \div 0.3$	699	0.2725	0.2555	0.7855 ± 0.0726
15	$0.3 \div 0.35$	501	0.3234	0.3033	0.7243 ± 0.0469
16	$0.35 \div 0.4$	333	0.3737	0.3505	0.7887 ± 0.0601
17	$0.4 \div 0.5$	441	0.4435	0.4159	0.8202 ± 0.1218
18	$0.5 \div 0.6$	215	0.5461	0.5121	1.178 ± 0.2877
19	$0.6 \div 0.7$	118	0.6493	0.6089	1.182 ± 0.3336
20	$0.7 \div 0.8$	73	0.7504	0.7038	1.241 ± 0.2661
21	$0.8 \div 1.0$	58	0.8744	0.8200	1.28 ± 0.3775
22	$1.0 \div 1.5$	52	1.2020	1.1272	1.632 ± 0.3273
23	$1.5 \div 5.0$	48	2.3570	2.2104	3.039 ± 0.4408

Table 5 for $\pi^- + C \rightarrow \pi^- + X$ at 40 GeV/c.

Table 6 for $p + C \rightarrow \pi^- + X$ at 4.2 GeV/c.

	Δn_c	Ν	$\langle n_c \rangle$	$\langle m_{tg} \rangle$, [GeV]	$\langle E_{\pi^-} \rangle$, [GeV]
1	$0.0 \div 0.05$	371	0.04097	0.03845	0.6973 ± 0.01689
2	$0.05 \div 0.055$	120	0.05283	0.04957	0.6426 ± 0.03745
3	$0.055 \div 0.06$	113	0.05746	0.05391	0.7386 ± 0.04803
4	$0.06 \div 0.07$	223	0.0647	0.06071	0.6545 ± 0.03133
5	$0.07 \div 0.08$	204	0.07529	0.07064	0.6507 ± 0.03379
6	$0.08 \div 0.1$	204	0.08497	0.07973	0.5818 ± 0.03699
7	$0.1 \div 0.12$	342	0.1099	0.1031	0.529 ± 0.02523
8	$0.12 \div 0.14$	304	0.1298	0.1218	0.4769 ± 0.0201
9	$0.14 \div 0.16$	239	0.1499	0.1406	0.4685 ± 0.02614
10	$0.16 \div 0.18$	197	0.1701	0.1596	0.5004 ± 0.03049
11	$0.18 \div 0.2$	172	0.1899	0.1781	0.426 ± 0.025
12	$0.2 \div 0.25$	364	0.2232	0.2094	0.4441 ± 0.01922
13	$0.25 \div 0.3$	259	0.2738	0.2569	0.4044 ± 0.01966
14	$0.3 \div 0.35$	173	0.3238	0.3038	0.4148 ± 0.019961
15	$0.35 \div 0.4$	119	0.3724	0.3494	0.4237 ± 0.03246
16	$0.4 \div 0.5$	108	0.4423	0.4151	0.4767 ± 0.02466
17	$0.5 \div 0.6$	41	0.5412	0.5078	0.5728 ± 0.0446
18	$0.6 \div 1.0$	28	0.722	0.6775	0.5874 ± 0.04754

	•		/ \		
	Δn_c	N	$\langle n_c \rangle$	$\langle m_{tg} \rangle$, [GeV]	$\langle E_{\pi^-} \rangle$, [GeV]
1	$0.0 \div 0.02$	444	0.01751	0.01643	1.539 ± 0.02777
2	$0.02 \div 0.03$	1138	0.02523	0.02367	1.514 ± 0.02868
3	$0.03 \div 0.04$	1211	0.03508	0.03292	1.352 ± 0.03216
4	$0.04 \div 0.05$	1183	0.04497	0.0422	1.183 ± 0.0312
5	$0.05 \div 0.06$	1031	0.05474	0.05136	1.079 ± 0.02955
6	$0.06 \div 0.07$	988	0.06488	0.06088	0.9551 ± 0.02882
7	$0.07 \div 0.08$	927	0.07502	0.07039	0.9337 ± 0.02859
8	$0.08 \div 0.1$	1617	0.08949	0.08397	0.8689 ± 0.02446
9	$0.1 \div 0.14$	2424	0.1188	0.115	0.7494 ± 0.01571
10	$0.14 \div 0.18$	1677	0.1591	0.1492	0.6864 ± 0.01782
11	$0.18 \div 0.2$	642	0.19	0.1783	0.5932 ± 0.02368
12	$0.2 \div 0.3$	2124	0.2439	0.2289	0.5709 ± 0.01288
13	$0.3 \div 0.35$	576	0.3231	0.3031	0.5502 ± 0.02022
14	$0.35 \div 0.4$	394	0.3732	0.3502	0.541 ± 0.02256
15	$0.4 \div 0.5$	478	0.443	0.4157	0.5609 ± 0.01968
16	$0.5 \div 0.6$	207	0.5441	0.5105	0.6592 ± 0.03356
17	$0.6 \div 0.8$	164	0.671	0.6296	0.6723 ± 0.04036
18	$0.8 \div 1.0$	47	0.8748	0.8209	0.7948 ± 0.0622

Table 7 for $p + C \rightarrow \pi^- + X$ at 10 GeV/c.

CONCLUSIONS

- The bare light quark masses obtained using the target mass analysis is this paper are in consistent with the theoretical estimations.
- Dependences of the average energies of π^- mesons $\langle E_{\pi^-} \rangle$ as a function of the target mass m_{tg} give the minimum at $m_{tg} \approx 300$ MeV. This point separates the decreasing and increasing parts of the average energies for reactions (1), (2), (3) and (4).
- The increasing of the average energies $\langle E_{\pi^-} \rangle$ of π^- mesons in the region $m_{tg} \ge 300$ MeV presumably is connected with the appearance of the collective phenomena in which more than one quark mass is required from the target. This result shows that in the interactions considered in this paper the collective phenomenon occurs at the quark level.

REFERENCES

[1] D.I. Blokhintsev, JETP, 33, 1295-1299 (1957).

[2] D.I. Blokhintsev, A.V.Efremov, V.K. Lukjanov and A.I. Titov, Proceedings of the XIX International Conference on High Energy Physics, Tokyo, August 23-30, 1978.

- [3] Baldin A.M. Particles and Nuclei, 1977, v.8 p.429.
- [4] J.Gasser and H.Leutwyber, Phys. Rep. 87, 77(1982).
- [5] L.B.Okun, Elementary Particles, 1988 (book).
- [6] Y.Nambu and Jona-Lasinic, Phys.Rev.v122 N.1 (1961).
- [7] Kh.Namsrai, Int. J. of Theor. Phys. v.35 No 8, 1996, p. 643-650.
- [8] M.A.Shifman, A.I.Vainshtein and V.I.Zakharov, Nucl. Phys. B147(1979) 385, 448, 519.

[9] Ts.Baatar, et al. Proc. of XXI International Baldin Seminar on High Energy Physics Problem, JINR, Dubna8 September 10-15, 2012.

[10] Ts.Baatar, et al. JINR Peprint E1-2022-20, Dubna, 2022.

ГОЛ ДҮГНЭЛТҮҮД

Энэ суурь, хавсарга судалгааны грант төслийн ажилд 10 ГэВ/с импульстэй p + C, 4.2 ГэВ/с импульстэй p + C, 40 ГэВ/с импульстэй $\pi^- + C$ болон $\pi^- + p$, 205 ГэВ/с импульстэй p + p харилцан үйлчлэлүүдээр үүссэн хоёрдогч бөөмсийн шинж чанарын судалгааг явуулж дараах гол дүгнэлтүүдэд хүрэв.

1. 10 ГэВ/с болон 4.2 ГэВ/с импульстэй протон-цөмийн харилцан үйлчлэлээс үүссэн хоёрдогч протонуудын хувьд бай массын утга өсөх тусам адроны төлвөөс адрон болон кварк-глюоны плазмын холилдсон төлөвт, дараагаар нь цэвэр кварк-глюоны плазмын төлөврүү шилжиж байна гэж үзэж байна (Зураг 1). 4.2 ГэВ/с импульстэй харилцан үйлчлэлийн хувьд температурын тогтмол утга нь ~141 МэВ орчим, 10 ГэВ/с импульстэй харилцан үйлчлэлийн хувьд ~186 МэВ орчим буюу өөр өөр утгатай байгаа нь анхдагч энергиэс шалтгаалж байна.

Зураг 1. 10 ГэВ/с болон 4.2 ГэВ/с импульстэй *p* + *C* харилцан үйлчлэлүүдийн хоёрдогч протонуудын температур бай массаас хамаарах хамаарал

1-р муж буюу байн массын хэмжээ өсөхөд эффектив температур өсч адрон өдөөгдсөн төлөвт орж температур нь өснө. 2-р мужид температур нь тогтмол утга өгч эхлэж адроны төлвөөс түүнийг бүрдүүлэгч кварк, глюоны төлөвт шилжих фазын шилжилтийн процесс явагдаж эхлэж байна. 3-р мужид температурын утга өсч цэвэр кварк-глюоны плазмын төлөвт шилжиж байна. Ингэснээр бидний явуулсан 2 туршилтын судалгааны үр дүн онолын үр дүнтэй тохирч байгаа нь тухайн харилцан үйлчлэлүүдэд фазын шилжилтийн процесс явагдаж байна гэдгийг харуулсан. **2.** 40 ГэВ/с импульстэй $\pi^- + C$ болон $\pi^- + p$, 205 ГэВ/с импульстэй p + p, 10 ГэВ/с импульстэй p + C, 4.2 ГэВ/с импульстэй p + C харилцан үйлчлэлүүдээс үүссэн хоёрдогч π^- мезонуудын хувьд бай массын аргыг ашиглаж дараах гол үр дүнгүүдийг гарган авав.

Гол үр дүн 2.1.

40 ГэВ/с импульстэй $\pi^- + C$ болон $\pi^- + p$, 205 ГэВ/с импульстэй p + p, 10 ГэВ/с импульстэй p + C харилцан үйлчлэлүүдэд байн массын түгэлтийн эхний буюу 0~0.01 мужид гарган авсан үр дүнгүүд нь нүцгэн кварк (bare light quark)-ын масс нь Стандарт Загварын онолын таамаглалтай тохирч байсан. (Хүснэгт 1)

Хүснэгт 1. Нүцгэн	кваркийн масс	өгч буй тухайн	интервалын	утгууд дахь	байн м	ассын
		дундаж утгуу	'д.			

	$m_q^0 = \langle m_{tg} \rangle$						
	Δm_{tg} , [MeV]	$p + p \rightarrow \pi^- + X$	$\pi^- + p \rightarrow \pi^- + X$	$\pi^- + C \to \pi^- + X$			
		(205 GeV/c)	(40 GeV/c)	(40 GeV/c)			
1	$0.0 \div 0.008$	4.03 ± 0.03	4.20 ± 0.03	4.38 ± 0.03			
2	$0.0 \div 0.009$	4.38 ± 0.04	4.65 ± 0.03	4.60 ± 0.03			
3	$0.0 \div 0.010$	4.71 ± 0.04	5.12 ± 0.03	5.05 ± 0.04			
4	$0.0 \div 0.011$	5.06 ± 0.04	5.60 ± 0.03	5.49 ± 0.04			
5	$0.0 \div 0.012$	5.41 ± 0.04	6.05 ± 0.04	5.95 ± 0.04			

Гол үр дүн 2.2.

Дээрх 5 харилцан үйлчлэлүүдэд үүссэн хоёрдогч π^- мезонуудын хувьд дундаж энерги байн массаас хамаарах хамаарлын судалгаа явуулж дундаж энерги өсч эхлэх, болон буурах завсрын хамгийн бага цэг нь 5 харилцан үйлчлэлд ойролцоогоор байн массын утга ~300 МэВ орчимд байсан. Байн масс нь ойролцоогоор 300 МэВ-ээс их болж эхлэхэд энергийн дундаж утга өсч эхэлсэн нь хоёрдогч π^- мезон үүсэхдээ бай цөмөөс нэг кваркийн массаас илүү масс авч үүссэн гэж үзсэн.

Зураг 2. Энергийн дундаж утга
 $\langle E_{\pi}$ - \rangle бай массаас хамаарах хамаарлын түгэлтүүд