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PEDEPAT

Csa3BT asK/IbIT

o IllyramaH 6yc TOTIINUTI, TYYHUI cucTeMuiir 60m0x HbIOTOHBI TOPIMITH apryyabIH
HUIJINIT

o VHTerpo criaiitH 6airyynax, TYYHUIT X3P3TaoX
o IlllpenyHrepMitH TOTIUTIINIAH IUAAVITH TOOH 6a YaHAPbIH CyIa/iTaaHbl

YUTIIYYAUIAH XYPI3HI, TYALATIAB. [lypAcaH YMIAsMyYAS I, IUIAABIPIITAIITYN 3apUM acyyi -
JIBIT MIUIASX, IIMHIIP AIBIIYYIIX, IIMHI apra, aiIr0pUTMYY, 6aiiryynax, TOOL00 XMIK OHO-
JIBIH YP IYH, IYTHITYYOMUIT 6aTanraaskyysiax, OJ0H YJAChIH TYBIIMH/I CyAairaa siByy/oK Aop-
BUTOI YPp AYH[ XYP3X 30PWITTOI 6aiicaH. MeH eMHOX KWITYYA]L XUIICIH CyaraaHbl 3apuM
YP OYHT LIaalny caiiskpyy/ax, epreTrex maapjiara 6ajicaap 6aiiHa.

[93pX YUTTINYYAI3P OJIOH YJICBIH HAP XYH[, OYXMii MAPI3sKINIH COTTYYAYYISA 3pO3MTANIH
cymajiraaHbl axkJIyya TOTTMOJT X3BJISTAK 6PCOJIO6H U siBargaxk 6ajiraa 6a MaHaig u cymai-
raaHbl AIXMYYI XUINTACOH, Laallu, TOLZOPXOi Yp OYHA, XYP3X HalajaraTai, r'yH3rMupyyiasH
CyAJjiax 3aiILITyil aapjiaraTai, epcoesgeeH] OpOoJILOXK TyXaiH YNIVIANYYAS, 6epCAUITH
XYBb HAMP33 Opyy/1ax O0JOMKTOM 'K Y3COHUIUT aypaax Hb 3yiTai. ComBuitH qaryy XuincsH
CyOaJiraaHbl &KJIbIH YP OYH Hb MaTeMAaTUKUIH IIMHKIISX YXaaH MIMH3 M343371371, OHOJI,
apra OyrHJIT 6010X 6ereem MIPTRKAMITH COTIYYIYYII XIBIITAK HUATUIH XYPTI3T O0ITOX
Hb a)KJIBIH OHOJIBIH O0JIOH ITPAaKTHUK a4 XOJIOOTIJIBIT Xapyy/DK 0aiiHa. COaBUITH XYPIIH/I -
I9M HMIMHKWITI9HUI eryynan 14 (yyHsac 8 Hb Web of Science-H MMIakT GpakTop MHIAEKCTI
COTTYYJLI, X3BJIATACOH), MATTAM 12 (10 Hb OJI0H YACHIH Xypasll, UITTITACIH), MOHOTpad HAr
X9BJIATACOH.

X9BJIYY/ICOH OYTIIYYANUIAH TOJT YP OYH:

1. JI3BIUIYY/ICIH CXeM, aJITOPUTM 3
2. Barancan 1emM, eryyn6sp 1
3. baTtajsicaH TeopeM 27
4. JIOKTOPBIH 33P3T XamMraajiCaH Aucceprar 1

Toc/IuiiH 1CUITH Yp OYHT “HIyraMaH 6yC TOTIIMTIY, TYYHUIA CUCTeMUT 6040X”, “MHTerpo
CIUIAlH 6airyynax, TYYHUIr xapornsx”, “llpesyHrepuiii TITIIATIIIMIAH IIUIAIUITH TOOH 6a
yaHapbIH Cyaaaraa” racdH OYyTIIIp TalmarHaxk oaiHa.

Tynxyyp yr: Atepanuiid apra, mryraMaH OyC TITIIMTI3JIMIT OMPOJIIL00 600X apryya,
HIpeaMHrepmintH TATIWUTTIINIIH TOOH WU, CIVIAH JOX6JIT.
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Yp AYHIr'UIH TOUM
Caa3BT aK/IbIH XYP39H/, TapcaH Yp AYHT TOBY TOVMJIOBOJI.

CyzmanraaHbl aXK/JIbIH YHAIC/III:

[IlyramMaH OUII TOTIIATTI 6a IIyraMaH OUII TOTIIUTTINITH CUCTEMMIAT 600X OHAOP dPIM-
OMITH UTepalifH apryyabIr 6airyyaax Hb TOOI[OH 60/I0X MaTeMAaTUK OOJIOH IIMHKIIOX yXaaH,
MHKEHePUITH X9PITI9H/, UyXasl au Xoa0ormonToit. lllyramad GMII TOTINUTIS/, TYYHUI CUCTe-
MMIAH I Hb aHAIMTHK Oaiiijiaap oJI0X Hb Malll XOBOP yupaac IIMIIAVIAT IMapBaa apraap
OVPOJIIIOOTO0P OJI0X acyyaasl TaBUTAAAr. Oepeep X103/ uryraMad OMIIT TOTIIUTIINIAH IINii-
IVIAT UTepalluiiH apraap eHaep HapuiBWIAATTa 0ipoIIooroop 600X I1aap/jiara yprad
rapgar. OH3 30pWJIT00P XaMTIUIH ©preH Xapamaasr apryyd Hb HeioToH 6a CTedheHCOHBI
apryyp 6ereep 5rasp apra Hb KBaJpaT XypATairaap JIoKajb HUIIIT OHIJIOTTOM. DHIXYY
COA3BT aK/IbIH XYPp23HI HbioTOH 6a CTedeHCOH TOPIMITH apTyyabIT CYIalk, HUAISITUIH
9PIMOMIT CADKPYY/IK OHASP dPIMOMITH HUIISITTIN apryynd 6airyynaxpir 30pbCOH.

Cy,uanraanbl INIMHIJIAT TaJI:
CsI3BT aXK/IbIH IIMHSJIST TAJIbIT apaax Oaiiayiaap TOoHOPXOM/K 6ajiHa. YyH/I :

o [llyramaH GMII TATIUTIIUIAT 600X YIAMKIAITYi X0E€p 6a TypBaH aJIXaMT apryyabliH
HUIAI9X HOXLIOMYYAUIIT 6aiTyY/IK, X0JI00TrIOX TEOPEeMYYABIT baTascaH 6a HAMIITUITH
XYPHABIT TOTTOOCOH.

o VIaMKIaIryii eHAep Sp3MONITH apryyablH IMHAMUK TOJIOBUITH Cyairaa Xuink, rpagmk
XapbLYYJIaAT XUNCIH.

e X0€p aJIxaMT apryyg Aaxb UTepanuiid mapaMeTpyyaAuiiH OHOBUTOM COHTOITYYIbIT CUM-
BOJI TOOLIOOJIOJI AIIUIJIAXTYl aHAIMTUK apraap rapraxx aBCaH.

» Xo€p 6a rypBaH aJIxaMT apryyablH HUAJISX 3Ty 6a XypaJII29Toi HOXLIOTYYIUAT
IryramMmaH OMII TATTIUTTIINIH CUCTEM PYY OPTOTIeK X0J00r0X TeOpeMyyIbIT OaTaacaH.

o IllyramaH OMII TATHIUTTIAUIAH CUCTEM O0I0X OHAOP dPIMOMITH apryyabIr 0AMTyyIDK,
IIBIIYY/ICOH apryyabIH UTepall TyTaM/, IYAIITIIX HUNT YIIAJIMIAH TOO XaMI1iiH 6ara
6aiix mapamMeTpUitH COHTOJITBIT OaTryyJsIcaH.

 JKurg 6yc TOp 433p MHTErpo Kyb CIIaitH 6airyysncaH.

» Baijiryysncad MHTerpo Kyb CIIaifiHbI XyBb/I, a/iaaHbl 60JIOH TYAr3p YaHAPbIH MIMHKUITDI
XUMCOH.
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 CrutaitHbIT JJOKaaMap 6airyyscaH Tyl poOOThIH 6aiipaaibir 60AUT 1ar XyraiaaHi ToO-
I100JI0X GOTOMIKTO¥ GOJICOH.

CymasiraaHbl aKJIbIH a4 XOJIOOTIOI:

TecanitH XypasH,I IIryraMaH OMII TATIIMTIIUIAT 6040X YIaMIKIAITYi OHIep 9pIMOMITH apryy-
IbIT 6ayryysacaH. TOTIIUTIIUIAH MUIANIAH OpUMH] (PYHKIMIH yIaMOKIaI OPLIMUXTYH 3CBII
YIIAMJKJIQJIBIT X3PIIIX3, XYHAPIJITIN Ye[, 9HI apra Hb IUNIUIAT OH46eP HapUiBWIaATan 010X
60JIOMIK OJITOITOOPOO MPAKTUK au XOJIOOTIONITO OOICOH.

CxaJisip TOXMOJAOJI OaTasicaH X0€p 6a rypBaH aaXxaMT UTepalluiiH apTblH HUIISNTUH HOX-
HOIYYOUIAT IITyTaMaH OMII TATIIUTITUITH CUCTEMUITH TOXMOJIOJ, 6pTOTTOCOH. DATrI3P HOX-
LTy YAUIT alliUIIaxK X0Ep 6a rypBaH ajxaMT UTepaIMifH apra eHIep SPIMOUITH HUMAIIITTIA
6aitx mapamMeTpuifH yTTYYAbIT OaiTryyscaH.

[IpakTMKaac ypraH rapcaH oJioH 604,10T0 133p apaMeTpuiiH siH3 OYpuitH yTraj, TOOH Typ-
MIVUIT XUIK yiMaap Oycap VKui 3p3MOUitH apryyaTaii XapblyylnalT XuitH, MNAIUIAT eHIep
HapuiiBWIaNTal 6a 60OATHIH Xyraraa 6ara 3apiryyiax apryyabir I9BIIYYICOH 0eree nitM
apra aJropMTMbIT IIyraMaH OUII TATIIUTIYIMITH CUCTEMUIAT 60I0XO0/ YP alllUITairaap Xapar-
JI3K OOJIOXBIT Y3YY/ICIH/, Cyla/iTaaHbl 3K/IbIH IMTPAKTUK ad XOI00TI0/ OPIUIMHO.
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IllyramaH OyC TOTrMIMUTIIJI, TYYHUNI
cuctemuiir 6omox HbI0TOHBI TOPANITH
apryyabIiH HUMNIIIT

HbIO0TOHBI TOPIUITH apryyAbIH HUWJIAIT, HUMISTUIH TOJIOBUIT yOIUPAAX TapaMeTp OHOBUTON
6aiixX YTTbIH MYKUIT Gairyyiax cygajraaHbl YU HUAT 9 eryyuinitr AHTn, Opoc Xai
T33P OMYUVK MAPTRKIIMIAH CITTYYII XOBYY/I9H, SATI3p CYAaJraaHbl Yp AYHT Tajgaaj JOTOOAbIH
3PASM MIMHXWITIHUI Xypaui[ 6 yaa WITT9H TaHWILYY/IcaH. MeH 9H3 YU XUITOCIH 66
X0€p uyXas yp IyH Hb TOCIUIAH YHACIH TYIIATrary akageMud T. JKaHaBbIH 30XMOH OMUCIH
“New Development of Newton-Type Iterations for Solving Nonlinear Problems” cag3sT 200
Xyyaac OYXMitH HAT COA9BT HOM, TOCIMIH YHACOH TYAIITIITY JOKTOP X. OTrOHIOPXKUITH
“Illyramad GMII TITIIUTIIMIH CUCTEMUIAT OOI0X OHIOD SPIMOMITH HUIIIITTII UTEPaLIMiTH
apryyq 6airyynax” c33BT JOKTOPBIH 33P3T TOPUJICOH AMCCEPTALIbIH KTy IOM.

1.1 VaampKiaanryi, Xoép aJixaMT UTepaluiil apra

VYnaMoKkaaaryin Xoép ajixamT gapaax uTepaluiir aB4y y3be.

ykzxk—%, (1.1a)
o)

Tir1 = Yk — Tk

9H]

o) e gy L@@ = F(@)
7'(w) ~ 6(a) i

~/ Hb T3T33C siITaaTai TOrTMon 6a 7, Hb UTepaluiiH napameTp. ¢(x) = ¢(z,y) QyHKI Hb z-C

v € R, (1.2)

rajiHa v-c Xxamaapax 6a yJiaMsK/IaJbIH TOJOPXOMIONTOOD

f'(@) =¢(x,7), v =0, (1.3)
93X Y333K 60sHO. f(z) € C*(D) 6a D Hb f(x) = 0 TOTIIMTIIAWITH IUAOUIT aryynax 3aBcap
Oair.
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Teopem 1.1. f(z) € C3(D) 6a xo aHXHbI OOXONT f(x)-UIAH 9T/ MM ¥ € D-J XaHTaITTai
oripxoH 601 (1.1) uTepaunitH HUIJIITUITH 9pIMO3 TepeB 6aiixX 3aiIIIryii 6eree ] Xypai33-
T3 HOXLIOJ Hb T, Hb Japaax HOXLeJIMIT XaHrax sSBaal

1 .
fk = ——+ O(f(l’k)Q) =1 + dkgk + O(f($k)2) (14)
1-— dkek
(1.1) ntTepaunitn apra Hb JaBTanT 6ypnd3 f(zx), f(yx) OONOH ¢(x)) YTIYYABIT alIUIIAX
6ariraa Tyn Kyur-Tpay6sid [17] Taamarnanaap oHOBUTOM apra 6omHo. (1.1)-uitH Xoépmyraap

aJIXMBIT 1OOPX Oariayiaap OMUMK OOTHO

f(xx)

T =X — Tk—F -
k+1 k k¢(Ik)

(1.5)
JH[,

Te =14 Tk = 14 O + dpb? + O(f (1)) (1.6)
X9paB v — 0 yen ¢(zy,v) = f'(x) 6osox 6a (1.4), Hb

Te = 1420, + O(f (1)),
6a

T = 1+ 0 + 207 + O(f(zx)?)

6omHoO. Tarsan (1.1) uteparr

_ . S
T @y
f(zr)

T T T )

(1.7)

60J10X 6a XOEp aJIXaMT OHOBUTO IOPOBAYTI3p 3paMOUiiH apra 6omHo [3)]. UTepamnuiiy na-
paMeTpuiir yycrary dyHkunitH [4] Tycnamskrait 6aiiryynax Hb UTepalyuiiH apryyabiH MIMHD
Oy/IMiir raprax 60JI0MK OJITOJIOT.

HO)=1, H(0)=dy (1.8)

HOXIOUIAT XaHTax 7, = H(0;) yycrard GyHKIMIAT sTH3 6Yp33p aBu y33X 60710MKTOM. Tyxaiin-
6aJ1 HAT Xs16ap XyBuIGap Hb

c+ (H'(0)e + d)z + wx?

H p—
() ¢+ dx + bx?

. ctd+b#0, ¢dbweR. (1.9)

OH3 yycrary GyHKIUIMITH TTapaMeTpYYAUIiT apaax TOXUOAAIYYAaAl aBy y3be.
1. (1.9)-mc=1,d=3—-2,b=w = 006051 6ug

_ 1+ (B_ 11?;21@)‘%

14+ (8—-2)z
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yycrard GyHKUTI 60nHO. 7, = H (6)) Oyxmii (1.1) utepar Hb

Yp = 25 — ig:; (1.10)

1t (8- 11?;219)0]“ f(r)
Th+1 = Yk 1+ (8 —2)0 ' ¢(wr)

~v — 0vyen (1.10) nrepar Hb Kunruitx apra 6omHo. (1.10) MTepauniir Tercresner sraBapt
ynaMsKIanryii KUHruitH apreId XyBuUI0ap rask Hapiise.

2. 1.9-mc=b=1, d=—-2,w=0060106ux

1— Pk x

H(z) = 1 fr;j;];

yycrard GyHKLUTI 601HO. T, = H (6) 6yxmii (1.1) ntepan Hb

 flaw)
ot (1.11)

)
T =y — 1- 117251@6]“ f(yk)
I T 607 gl

Yp =T

~ — 0yen (1.11) nrepai KyHur-TpayosiH apra 60/HO.

3. (1.9)-nc=1, w=d=—1,b=0060m6un

1 2
:1+1+7¢kx T

1—=x

H(x)

yycrard GyHKUTI 60nHO. 7, = H (6)) Oyxmii (1.1) utepar Hb
f(zy)
=Tp — —b, 1.12
o ‘ o(x) ( )
L+ 50 = 0F ()
1— 0 ¢(wr)

~ — 0yen (1.12) ntepar Hb MaxemBapbIH apra 60JIHO.

Tkl = Yr —

1.2 VmnamoKkiaanryi, rypBaH ajJixaMT UTepaluiiH apra

Hapaax rypBaH ajxaMT aprbil aBY y3be.

U= Ty — f(wg)
¢($k)7
o= Yk — mééig (1.13)
Th41 = Rk — OékM
+ ¢<xk)7

(1.13) uTepamuiir 8 myraap 3pam63Ta b6aiixaap «y-T 00X IIaapjiaraTaii.
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Teopem 1.2. Teopem [1.1}mitn Hex1eMYY OMeK Gaiir. Yiamskianryii rypsas anxamt (1.13)
uTepaluitH apra 8 myraap 3p3MOMITH HUIIDITTIN 6aiix 3ai/IITyil 66ree Xypamaia3TIii
HOXIIeJ1 Hb UTepaluiiH mapameTp 7, 6a aj Hb

To =1+ dpby + Brb} + b + -+ -, (1.14)
60710H

ap=1+20, + (B+1)6 + (3 + 28 — 4)6; e
+ (1 + 40, )vr, + O(f ()", '

HGXL{GJIYY,ZU/II;'II‘ XaHrax sapaaJl.

X5paB (1.13) utepauun, 7 = H(6x)-1 (1.8), (1.9)-p Toom001601

¢+ (dpc + )0y, + wb?

¢+ dby + bo? (1.16)
c+d+b+#0,¢,d,b,w € R,

e = H(O) =

: )
L4~ L4 ¢r

60710X 6a 611 r'ypBaH aJIXaMT YIaMSKIAITYii Oy MTepaluitH apratai 60aH0. YHIX33p 7, 6a

oy, Bb (1.16) 6a (1.17)-p erermexen, (1.14), (1.15) Hexuenyyx,

- w—b dfd . b+w)d d*—bc -
b= __(_"‘dk:)? j= - Ored Tk,

c c\c c? 1

o, = H(6y) + 02 +di (5 - 0% + (1+ 2du00) v, (1.17)

TOTTMOJITOMTOOp OMenHs. Miimp [4] yycraru dyHKI[ Hb yIaMsKIaATyi TypBaH aaxaMT UTepa-
LMIH OYJT aprbIT ery 6aifHa.

1.3 VnamoKiaaary OHOBUYTOM apryyablH XapbUyyaalaT

VaaMsKIanaryii r'ypBaH aJixaMT OJIOH TOOHbBI apryyz 6omoBcpyyaracad 6anmar [2, 5-7, 9,
11141 ZOC2]). Onr33p Hb 7, 60I0H CYYINITH aTXMBIT TOOL00M0X f'(2;)-39p 66p XOOPOHI00
sraraar. f’(z;) TOOLLOOMOXO/, I'YPBAaH TOPMIIH apra MX5HX93 X3PIIIATALST. OXHUIX Hb
[6],[11-13],[9] axxnyyman aBd y3C3H

f'(2k) & Nj(z1), (1.18)

nexent. IHI N3(2) zx, W, yr 0@ z; UATYYH 093pX HBIOTOHBI 3 33prUitH MHTEePHOAIU. X0Ep
Iaxb apra [/ Hb askuip, A9BILIYYICOH JOX6IT

f(a) = v f () + vaf (wi) +vs f(ye) + vaf(zr). (1.19)

vy, Vg, v3 62 vy TOTTMON 6a f(x) = 1, z, 22, 2° XyBb[ (1.19) Hb anMATran 60I0X00P TOFOPXOIi-
JIOTTIOHO.
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[ZOC2] axkmnp, napaax gOXOITUIAT aBU Y3CIH.

f'(z) = af(oe) +bf (yr) + cf (z) + dp(x),
¢@Q::fw%»_f@w::fhhwﬂ. (1.20)

Wy — Tk

(1.20)-m a, b, c 6a d Hb ToHURTTN O(f (1)) 3paM6UItH HapuiiBwIaATal 6aiiX TOrTMO-
nyyo.

Omoo 6up (1.18), 6010H IOXOITYY/ I39D YHIICIICIH 3aPUM apryyabir aBY y3be.
Zheng HapbiH apra (Z8) [9] ub II93P YHIIC/ISCOH 6eree mapaax X3a03pTait

f(xy)
S L C..) S . veR\{0
Yk = Tk Flr, wr] wy = o+ f(xR), v \ {0}
f(ur)

2 = Yp — , (1.21)

T ek uk] + Fluks wi] — ek, wel
T — f(zk)

k+1 kT eyl Ge—yi) flzk vk @k + (2 — k) (2l —2k) F 2k Y T wk] -

Khatrri Hapsin apra (KS8) [7] ub (1.19) 533p YHAICIICOH G6ree[ napaax xan63pTaii
P A (1.22)
f[mlﬁ wk]

o J (k)

k= Yk o=y +vf(@r) (=) fwe)  Qap—2yp+vf(zr)f(yr) ’

(Tr—Yr)Y (we—yr)vf (k) (zr—yr) (We—Yk)
_ f(zk)
Tkl = 2k T Tt T
JH[,

H, — (Yx — 21) (wr — 2x)

1 — = )

(e — 21)7(Tk — Yi)

HQ _ (yk - Zk)(xk - Zk>f<wk) (1.23)

(wie — z) (Wi, — y)v S (1)
i — (@ = 2) (we = zi) f(ye)
P gk — 20w — ye) (@ — yp)

_ y(me—2zktyr) f (mp)+oi+ (4214 2y0) Te+322 —2yn 2k
Hy = (yk—2zk) (xp—21 ) (Wi, — 2k, f<zk)

(1.22), (1.23) apra ub [4,11-13]) asxunz g9BLUIYYICOH apryyATait TeCT3i IaxK [7]-1 TOMASIIICIH
60m08BY [9] 19X apraac siraaTtaii. 60omoH (1.22)-aac xapaxap (1.22) maxp X0€p 60JI0H
rypasayraap anxam Hb (1.21)-eec mnyy TeBertaii. TOMbEOHBI XyBbJ] OJIOH TOOHBI MaTeMaTH-
KUIH YITIJIYYI XUIIAT Hb TOOLIOO/IBIH O0JIOH TOTTBOPSKMITBIH YYAH33C HOH TOXMPOMKIYIA.
Uiimp, TOMBEOT Xsi716apu/iax IaapajaaraTaii.

[ZOC2]-n maBUIYYACIH apTyyabiH 6y Hb I93P YHISCISCOH 6a mapaax xan16spTait

Y = Tk — —f(xk>
f[xbwk]’
B _ fw)
2k = Yk _Tk—f[l’k,’wk]’ (124)
f(z)

L= AR akf[l"k wy)’
b
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YYHA

e+ (dpe+ d)by, + wb?

) e i 1.25

Tk c+d9k+bgi , ¢+d+b#0, c¢dbuweR, ( )

6a
1
. | (1.26)
(1 + apwn (fres — 1) + b (Foeked 1)>

27 + Yor + (T + Y0%)?
(Tr +70r) (1 + Yor)
T (T + YPr)

QWi = (1 — Tk)

?

bk = [ G = flor, wi], (1.27)
Tk=1+7_'k9k, ka ;Ei’;;

[Z04] asxmnp, (1.21)), (1.22) apryyn oH 4aiyy 60I0XbIT Y3YY/ICIH.
(1.24) uTepaumiir MIyy 9BTIVX9H OMUBII

P (CON
f[wlﬁwk]’
2k Zyk—ko (1.28)

f[xlm wk] ’
f(zk)
2, Yk)+ (2 —yk) 20Uk, k] + (2o —Yk) (2 —2k) f (20, Uk Tl W]

7.-H Topopxoit courontyynan (1.28) ub xycuarr [1.1}1 nypacau apryyasir erd 6aiiraa yupaac
TYYHMIAT S[T33p apryyIablH 6PTreTIe 'K Y335K 60JIHO.

T4l = Rk — il

1.4 VYnavpKiaanryi aprbiH JMHAMUK TOJI6BUMH Cyaairaa

M1 60s10H Gycaj apryyablH AMHAMUK TOJIOBUITH XapbLYYIaJITYyabIT Xuite. XycHOrT|1. 1| max
CYY/IUIiH 6araHbIH TOBUMJICOH HIPUIT 1aalllu/ allinTaaHa. OHIep 3p3IMOMItH HUIIITTIM
apryyp Hb OJIOH ajxmaac Oypaasr yupaac QyHKIMITH MIYY OJIOH YTTYYABIT Iaapagar. Mitm
yJpaac OJIOH aJIXaMT apryy Hb Xap HITYYATI 6aigar (MUIyyass muiim). DHD HITYYIUIT
OJIOXBIH TYJIZ, OM[ TypBaH aJIXaMT apryyabIT JOoOpX 6aiimyiaap 6udHs [[16]:

f(xr) x
f[wky wk] Hf( k’)

OHA Hy = 1 + 04 (7, + ayvy). XapbLyy/IaaT XUiiX YYAHI3C Xap LSTYYAMIAT onbe. Xsinbapuiax

T+l = Tk —

YYOHI3C z = +1 g3ryypraii p(z) = 2% — 1 OJIOH TMIIYYHTUIT aBbsi. XYCHII'T /1 78, KS8, M1,
L8, K8, S8, CH8 apryyznbiH Xxap U3TYYAUIAT OpyY/aB.

ABY y33K OYii UTepalMyIblH XOOPOH/I XapbIIyy/aT XUiiX 66p HAT apra Hb TaTaJlJIbIH
myskuiir (basin of attraction) 6aiiryynaax. bugunit goBuryyincsd (1.28)-r p(z) = 2¥ — 1, k = 3
OJIOH I'MITYYHTUIT aIliuIaad 6ycaj apryyaTaii xapblyyaaaT xuiie. TepalinyabliH AMHAMUK
TeneBuitr [16] cygnaxmaa 6un [—3, 3] x [—3, 3] kKomruekc xaBTrair 600 x 600 XaMsK33TIi TOPYY-
Iaz XyBaask 9H3 MYKUJ, OpIINX OYX SI3TYYPYYABIT OJICOH. ABY Y333k Oyt 12 aprbIH TaTalIIbIH

myxuiir 3ypar (1.1} nypenas. 3ypar|(1.1]6a Xycuart[1.2}-¢ xapaxas M1 6omoH Z8 apryyz 6ycaz
apraac Wiyy TOTTBOPTOJ TeJeBTIi 000X Hb Xapargax OaifHa.
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XycHort 1.1: [TapameTpuiiH COHTOJIT

c d b w Tk Apra
1 —dj, 0 0 175,6 G (KS8), (Z8) [7)9]
~ 0
ad 1405 +ady, £ :
1 - 0 ady #7{2 Jlordu (L8) [11]
k
~ 2
1 B-1-d, £ 3 +H(B—1)0k+56 Kuar (K8) [12]
THér (B2 1 )0t 12267 [12]
146 i
1 —ﬁ 0 0 _ig Ilapma (S8)[13]
k
« H(6 - -
1 20— g i H() =3 i Lii : Yeb6piues-Xaeii (CH8)[6]
= k
1 —dy 4 0 1 [16]
(1—=£6)?
7 1 1 1
1 —dy T+yox 0 1—dy,Op+ 15 50 Tykpar (T8)[5]
Kyur-Tpay6 (KT8)[17]
1 —dj, = 0 %; Conejimanm (SS8) [18]
1 92 1 o .
1 —Al 0 T (1+ (1+’Y¢k) + (1+7¢k)2>1 5. | Comeiimann (SV8) [15]

1.5 Vaamokaanaryi Haimayraap sp3MOUIiH OHOBUYTOI ap-

T'YYABIT Oairyysiax

ViiaMKIaIryin japaax uTepaluiiH apreir aBy y3be.

Yr = Va(Tr, yr) = 1 — M7
Pk
22 = dulon ) = e~ 7l 2, (1.29
T+l = 2k — &kfgf:),
YYHA
we =425 o), 6=+ (FE 1)~ fan). v e 1 (1.30)
OH[ Vo (2, Yy ) XOEPAYTaap 3p3IMOUITH HUMIAITTIN UTepall.
6, — f(ye) ~ flur) 6 ~ fla)

Fla) ™7 Fw) T F)

Hb (1.29) A3X YHICOH XOMXKUTAIXYYHYY. Tarsan xy, — =* yen 0, = O(f(xx)), o = O(f(2))
6a x* Hb f(x)-MitH 313 Wnita. X3paB 1 (zk, yx) Hb LIOPOBAYTI3P dPIMOUITH HUMIATTIM
OHOBUTOM MTepar 601 f(z;) = O(f(xx)*). Uima vy, = O(f(x)?). XapaB 6un

1

o= ———, dp =14,
1+ vor
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XycHarT 1.2: Unyynan wminnyya,

Apra

Xap usryyn §

£ TOO

78

—0.555220397255420 % 1.15928646739103¢
—0.460115602837211 £ 0.4563907035167197
—0.450000501793328 +£ 0.1290639667588041
1.89303155290658 £ 0.233570409469479¢
1.79931236664623, 2.67863086464586

10

KS8

—0.555220397255420 % 1.15928646739103¢
—0.460115602837211 £ 0.4563907035167197
—0.450000501793328 +£ 0.1290639667588041
1.89303155290658 £ 0.233570409469479¢
1.79931236664623, 2.67863086464586

10

L8

—0.667945591214872 +£ 0.100425568541848:
—0.664810542206285 £ 0.2366769313990341
—0.256812572074558 £ 0.169283171474748:
—0.235816064609120 =+ 0.1018450508999041
1.785182636 £ .1865090131%
2.10884950227391 + 1.16590411063961¢
2.176232698 £ .54574131413
2.15196391166621, 6.87682348522886
2.10230777448310, 1.71672219502143

20

M1

—0.676558832763406 + 1.36018262584118¢
—0.624888463964184 + 0.20890104128772¢
—0.493766364512498 + 0.6070605019536254
—0.461962845726289 £ 0.2211191959865231
—0.204327487662501 + 0.86651046669376¢
1.932083323 £+ 0.11631568414%

2.004864313 + 0.7365790432:

2.083325978 £ 0.4554281653¢

16

TIMIIIJISI allIUIJIaBaJI

O — E;ﬁk, Hk + O = deQk

Tarsan gapaax yp AyH xyunHTait [ZOC2).

Teopem 1.3. Teopem|[1.1}u Hexuenyys 6uemk 6aiir. Tarsan (1.29) urepaunitn HUAIITHITH

14

(1.31)

9paM63 8 6aiix ATy 6ereem Xypaia3Tait Hex1emn Hb (1.29) 19X 7., & Hb Japaax HeXIe-

JIMIAT XaHrax aBaaj

Te = 1+ diy, + SO+ 307 + -

ok =1+ diby + (B + 51@’)02 + (:)’4' Czk(B —1- éi))&i

(1.32)

(1.33)
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(b) KS8

(e) SS8 (f) SV8

(j) CH8 (k) K8 () KT8

3ypar 1.1: 23 — 1 XyBbJ, yIaMJK/IAITY, TYPBaH aJIXaMT apryyabIH TaTa/ILJIbIH MYK

(1.29) utepai; Hb KyHr-TpayObIH TaaMarsiaa €éCOOp rypBaH aaxaMT y/IaMsKJIa/ITyii OHOBUTOM
apra 6omHo. Yuup Hb (1.29) apra Hb gaBTaaT 6ypa GYHKIMITH IOPBOH YTTHIT alllMIIaX Oaiiraa
eepeep x371631 m = 4. [4,[10] naxb caHaar ammraaBal 7, O0JIOH qy,-T Japaax 6aiiaiaap UiIyy
e€pOHXMIi COHT'OX OOJTHO:

Oy, ok, U, XaHTANTTa rearep QyHKUMIH XyBbL, 7, = h(Ok,0k), ax = g(0k, ok, V) TIK TO-
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OOPXOMITHO. f(21) = O(f(x)*) 6aitx 3aiiryit 6eree Xypauia3Tait HOXIeMUIAT hoy = hyg =
ho1 = 1 T3k wanrax 60mHo. dux h;; = h(9)(0,0), (i > 0,7 > 0). UM hyy = hog = hay = hia =
hoz = 1 6avixan (1.29) Hb OHOBUTOJ MTepal] 6aiX 3aIIITYI1 66T XyPa/II3TIii HOXIE Hb

gooo = 1,

9100 = Go1o = Yoo1 = 1,

G101 = Go11 = 2,

9200 = h20, 9110 =1, go2o =0,

g300 = hao + hzo — 1, ga10 = hao — 1, g120 = gozo = —1.

Anraspwiir (1.31) ammrnan manrax 60mHO. v, = O(f(x)?) ydpaac OHOBUTOI TOMbEOHBI

xyBb[, (1.33) maxb yamaroan rumyyz, O( f(z;)*). DH3 yrraap 6ug (1.29) Hb OHOBUTOI 6aiix
3aMTIITYit 6eree[ Xypauld3TIit HeXIeN Hb 7y, ay, -T (1.32) 600H (1.33) rask 6MUMX SIBAAT IOM.

1.6 Xo€p ajmxaMT MTepalMilH apra Jaxb ImapaMeTpUiiH

OHOBUYTOWM COHI'OJ/IT

Hapaax utepauuiir aB4 y3be.

f(xx)
or + Af(wg)’
Thy1 = Yk — fk—f(yk)
O+ Af (wr)’

Y = Tk — AER,

(1.34)

YYHE wy, = x + vf(2k), 7 € R, ¢op = flag, wi] = L) F@n)  Bynauit soputro (1.34) aprair

vk
IOPOBAYT33p 3p3MOMITH HUIMIIITTII 6aiixaap 7, mapaMeTPUIAT 0JI0X.

Teopem 1.4. [ : D C R — R XYp3/II33T3¥i yaaa TacpanTryil nuddepeHnamdaargax 6erees
x* € D 3ray mmiin 6air. AHXHBI IOX6JT xo-T x*-1 XYP3JIL33T3i1 oiip 6ereey, 7, mapaMeTpUiir

6aiixaap coHrocoH 6aiir. Tarsan (1.34) apra 1epeBayrasp 3PIMOUITH HUATIATTIIN.

1.7 OnHoBuTOI 3ypraa 00JI0OH J0JIOOAyraap 3p3MOMITH apra

(1.34)-1 v = 0 6aiir. Taran (1.34) Hb

B f(zn)
Y () + M ()
Tht1 = Yk — Tk U
f'(@i) + Af ()

Y =X

(1.36)
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6omHo. Teopem[1.4}p 7.-T

Af (wr)
f'xr)
COHT'OCOH Ye[, uTepal] Hb AOPOBAYTI3p 3p3MOUITH HUIIATTIM 6aiiHa. (1.36) apra

uTepauuitH anxam 6ypz, f(xx), f(yx), f'(x1) T3C3H QYHKIMIAH rypBaH yTThIT 608HO. Witmz yp
AITUiTH MHOEKCUIT ToouBon YAV= /4 ~ 1.587.

Teopem 1.5. f: D C R — R XypaniaaTaii yaaa nuddepeHumanwiargax 6ereen »* € D aran
i 6air. AHXHBI IOX6JT xo-T x* -1 XYPIIII3TIii oiip 6ereen )\, 6a 7, mapaMeTpyyauiir

"

A=n= -2 (1.38)
k

2
Fo=14 % n % 430, + O(f(20)?) (1.39)

6aiixaap coHrocoH 6aiir. Tarean (1.36) apra Hb 3ypraajyraap apamM03Taii HUIATHI.

1.8 Canax o¥iTO¥ Jo/I00AyTraap 3p3MOUIH apra

CaHax OMTOJ apTblH XyBb, Aapaax TeopeM XYUYMHTIIA.

Teopem 1.6. [ : D C R — R XypanuaaTai ynaa nuddepeHinanruiargax oereem * € D aran

I 6aiiT. AHXHBI IOXONT xo-T x*-1I XYPIL93Taii oiip 6ereen (1.34) naxb v Hb
1

ek (1.40)
k
A Hb (1.38), 60m0H 7,-T (1.35) 6a
3
7= 1= 3+ qad+ 21+ ) + O(f(@i)?), (L.41)

6aiixaap coOHrocoH 6aiir. Tarsan (1.34) apra Hb J0J00yTaap SP3IMOMITH HUISITTIIA.

OHI23C TTapaMeTpPYYAUifH OHOBUTOW COHTOJIT Hb HUMJIITUIH 3PIMOUIAT 4-C 7 XYPTI/
ecrex 6010MK OJITOK OaiiHa.

60IOH COHTONTYY[, I39D YHAICIOH X0ED aIXaMT YIaMsKIa/ITyii caHax OMTOi
IoJIOOAyTaap SPIMOMITH HUIAIITTII apra 6aiiryynarmaHa.

Zo, Ao, Y0 ereraceH, 0om  wy = xo + Yo f(zo),
1 NY (z)

M= T R wy = g, + Y f (k) Ak = TAENL 1.2
IV
BT S N (w) (1.42)

B _ f(yr)
Thel =Y TG T ) "

YYHZ, 75 Hb (1.35) Hexuenuir xanraHa. UL, N3(t, Ty, Yk—1, Th—1, Wk—1),
Ny(t, wy, Tp, Wy—1, Yy—1, Tk—1) Hb (Tk, Tp—1, Yr—1, Wy_1) OOIOH

20717”'7

(X, Wi, Th—1, Yr—1, Wk—_1) LBTYYA O33PX T'ypaB O0JIOH IOPBEH 33pruiiH HbIOTOHBI MHTEPIIONS -
LIVIIH OJIOH TMIITYYHT.
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1.9 IllyramaH OMII TATIIMUTIIIUITH CUCTEM 000X 3371 3PIM

OMifH apra

OrerpceH myramas 6um F'(z) : D C R" — R™ cucTeMuiid XyBb, F'(z) = 0 HOXLIOJI XaHrax
T o

({1 T()s -+» T(,)" BEKTOPBIT OJIOX GOIJIOTO aBY Y3be. JHI TOP/NMITH GOIOr0 Hb TOOH aHANN3,

VIH)KeHePWIaJT, UX3BUISH TaapAar. JH3 60AJI0TBIr 600X XaMIUITH 6preH X3p3MI3TAAr apra

Hb KBaZpaT HUMIAATTI HbIOTOHBI apra 1om

LTp+1 = Tk —F/(.Tk>71F(l’k), k= 0,1,.... (143)

OHJ x, Hb aHXHBI 16X6NT, F'(x)~! Hb F'(z)-uitH @pewre ynamvskian F’(z)-uitH ypByy.

1.10 Xoép aaxamT apra

X0ép anxaMT Japaax aprbir aBy y3be [ZO3|

yr =y, — F'(23,) 7 F (), (1.44a)
Tht1 = Yk — ko/(SUk)ﬂF(yk), (1.44b)

YYHZ, T Hb n X 1 X3MJKIICT MaTPUL,. yx-UAH OpUNHL F(x).q1)-niiH TelsOpbIH 3amapraar
almriaBan

Flan) = (1= Fu)mF () ) Fye) + O F(ye) ) (1.45)
YYHZ [ Hb HATK MaTpuil. (1.45)-c 7-T

I— F'(ye)7F ()" =0 or 7, =F'(yx) " F'(xp) (1.46)

6aiixaap COHTOBOM F'(z311) = O(||F (z)||*). (1.46)-T (1.44b)-1 opayyn6an

Terr = Yk — F'(ye) " F (uk).- (1.47)

Bunnmit 30puiro F'(y,) -t O(||F(xy)||?) HapuitBwianTaiiraap 00X IOM.
x), OpUMH Oaxb F’(y,) -uitH TeiiylopbIH 3afapraar alinriaBal

F'(yy) = F'(zy) — F" () F'(zx) 7 F () + O(R?)
= F'(z1,) (I — Py) + O(h?), (1.48)

YYHA
Pk = F/([L'k)_lF//<xk)F/<$k)_lF(£Ek), (149)
6ah = ||F(zy)l], O(||Fx|]) = O(h). zx Hb 2*-1 XaHTaNTTall OVPXOH Ye[,

1Pl < 1, (1.50)
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I'9’K Y33K YagHa.

(I-P)"' =) Pl=I+P+0(. (1.51)

J=0

yuup ypByyruitH Tyxait Banaxsid 1emm écoop (1.48)-c
F'yn) ™ = (I = )7 F'() ™ + O(h?) = (I + Po) F' ()™ + O(h?). (1.52)

(1.52) o¥iponII00 TOMBEOHOOC

Fllyp) ' (I + Po)F' ()77, (1.53)
yyuwuiir (1.47)-z opnyymn6an

Ter1 = yr — (I + o) F' () " F(ye). (1.54)
(1.46)-n (1.53)-r ammrnasan

T = 1 + P, + O(h?) = I + 20, + O(h?). (1.55)
JH[,

O = % - %F’(xk)_lF”(xk)F’(xk)_lF(xk). (1.56)
Nitmza

F(yp) = F "ém (F’(xk)lF(mk))Q +O(R?), (1.57)

F ()" Fly) = F'(x’“)_Q Fle) (Fw) Fan) +00) (1.58)
(1.56)-r (1.58)-5 opnyynban
F'() " F(yr) = ORF" () 7 F (zx) + O(h?). (1.59)

Heree Tanaac (1.44al) 6a (1.59)-r ammrnasan (1.54)-r

Tpy1 = Tk — <[ + (I + Pk)%>F/(‘rk>1F(xk)7
3CBIJT

Thy1 = T — T () 7 F (2), (1.60)
3K OMYMK OOTHO. DHT,

P
Tk:1+(I+Pk)7’“:J+@k+2@i+0(h3). (1.61)

(1.55) 6a (1.61)-c 7 6a 7, xamaapas

7= (e — O, = +20, + O(h?) (1.62)

rax rapHa. Wiimp, [3])-1 ereraced Teopem 1 mryramaH OMIll TATIUUTIANYYAUITH CUCTEMUIH
XYBbJ], 6PTrOTIOTOHe.
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Teopem 1.7. F(z) : D C R" — R" 6a F(z)-H mmiin z*-r aryynax D C R" ryarap saarai
OJIOHJIOTT XYP3JI1199T3i yraa dperte ynamvskianrtait 6air. Men F’(r) Hb TacpanTryii 6a z*
OpYMHJ, yPBYYyTait 6aiir. TorBaj x* - XYPIILIITIii OMp aHXHbI JeXenTuitH Xyssg, (1.60)-p
onaoxX {zi k>0, o € D Japaanal gepeBAYT33p 3PIMOUITH HUMAAMITTIN Oaiix 3aimmryi
Geree[, Xypa/I3aTaii HOX1LION Hb T, MATPUI] HOXIIeNVIAT XaHTax SBAAJT IOM.

Teopem [1.7}c x0ép anxamT uTepal JepeBAyIr33p SpIMOUITH HUIISNTTII 6aiix
3Ty 6Orees XypasiaaTIit HOXUEI Hb Ty, -T (1.62)-p COHrOX rak MEOpAOHe. O MaTPUIIbIH
YTIBIT TOOLI00JIOX Hb MPAKTUK Tajlaacaa XyHIPIITIi 6aiimar. DHD XYHIPIIMIAT JaBaXblH T/
6un ©, HapuitBWIasI caiTait, Xsyibapaap TOOL00IOX IIaapajaraTai. y,-T

yk = ) — aF'(2) " F(x3), a#0 (1.63)
I'3)K TOIOPXOJ/ICOH 6aiir. ©,-T TOOL00IOXbIH Ty, F(z)-H mapaax siraBapT Xapbliaar aBd
y3be [1]
! 1 1
[z + h,x; F] = / F'(x +th)dt = F'(z) + EF”(x)h + EF"'(a:)h2 + O(h?), (1.64)
0

yyuz hi = (h,h,.%. h), h € R". DOr33pUIiiT alluIIaBaI qapaax qepBeH xsa6ap TOMbEO rapHa.

1 / - /
0 = 1P (I F) - Fiw) + (), (1.65)
1 / — /
O = —F' (@)™ (F'(zi) = [y s F)) + O(h), (1.66)
_ 1 / —1 3
O = 5 (1= F'@) " Flw)) + O(h") (1.67)
o 1 / —1 v 2
O = 2@(—[+F(yk) F(xk)> +O(R?). (1.68)
F-H sinraBapt xapbplaa [y, x; F'| Hb n X n XaM33c¢ matpur, ([1])
[yv €, F]i,j -
_ Fi(yys - Y60, TG+ - Tm) — Filya), - ¥G-1:G)s - - - Tw) (1.69)

YG) — TG)
yyHn 1<4,5<n.

1.11 T'ypBaH ajixamT apra

Ilapaax rypBaH aJixaMT aprbiT aBY Y3be:

Y = Tp — F’(a:k)_lF(a:k), (1703.)
2k =Y — T (20) T F (), (1.70b)
Tp41 = 2k — OékF/<xk)71F(Zk)' (1.70¢)

(1.70) uTepauniiH HUWJIAIT Japaax TeOpeMOOp 6reraeHe:
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Teopem 1.8. Teopem 1-uitH Hexueayya ouemk 6air. Tarean (1.70) urepalr p 3paMOMiTH
HUIAJISNTTIM O6aiiX 3aiIImryit 6ereen Xypa/ldoTaii Hb UTepaluiiH 7, 0a «; MmapaMeTp Hb
XycHarT (1.3 maxb HOXIEIUIAT XaHTax SIBAA IOM.

XycHort 1.3: [TapaMmeTpuiiH COHTOJIT

D | o Tk

5|1+ 0(6) I+ 20, + 63

I 420, + 0(03) I+ 0(0y)
I+20,+0(637) 1420+ 0(03)
7| 1+20,+4 607 +3dy | [+ 20, + O(03)

OHOXYY COA3BT aKWJIJ, IIyTaMaH OMIII TOTIIMTTI 6a TOTIIUTTIAYYAUITH CUCTeMUIT 6010X
OHIep 3PIMOMITH apryyabIT 60TOBCPYY/IK, HUMIMTUIH HIMHKUITI3 XUICIH OOJTHO.
['on yp OyHT TOMMJIOBO:

 JlepeB 60JI0H HaliMayraap 3p3MOMITH HUIAISTTI OHOBUTO apryyabIT A3BIITYY/ICIH.
Xo€p 60JIOH I'ypBaH aJIXaMT YIaMKIAITYI apTyyAbIH XyBb, HUIIX 3aMIIITYii 6eree]
XYP3JIL33TI HOXIeNUIT rapraxx aBcat. ToArssp HOXLOMYYA Hb HUMISITUIAH 3pIMOUIAT
TOTTOOX0O0C rajiHa MMHY apryyablr erd 6ajiHa. MeH yycrard QyHKIMITH TyC/IaMIKTai-
raap 611 OHOBUTO¥, y/IaMSKIQ/ITYl apTyyIbIH 6PTOH aHTUIAT J3BIIYY/ICIH. YIaMsKIaITyi
apryyablH AMHAMMK TOJIOB 0aiiIbIH Cymaaraa 60oH Oycas apryyaTai XapbiyyiaauaT
XUIACOH 60HO. [I9BITYY/ICOH Oy apryymaac ajab Hb CaifH O0JIOXBIT OV, IMHAMMUK TOJIO-
BUIH Cyfajaraaraap TO4OPXOMICOH.

» YesieeT mapaMeTpUIT aryyiax X0€p aJxaMT apryyabIH IIMHD OYIMIAT O3BITYYACIH. X0Ep
aJXaMT apra Jaxb apaMeTpYYAUITH OHOBUTOM YTTYYIbIH XYBb JaXb aHAIUTUK TOMbEOT
0JICOH. T3AT33p COHTONTYYA, Hb X0Ep aJIXaMT apryyIablH HUMIITUITH 9PIMOUIAT UXICTIX
60JTIOMKMIAT ONITOXK GaitHa. MitMmp, siMmap HAT H3M3JIT TOOIOOIOTYITI3p HUMISITUIH
9p3M03 IePBO6C A0JI00 OOIK 6CCOH.

o Illyraman O6uIII CUCTEMUIT 6OIOX AOPBOOC NOJ00AYTaap 3PIMOUITH HUMIINT OyXuit
apryyabIH OY/IUIT 60/10BCpyy/IcaH. JH3 Oy apra Hb eMHO 60JI0BCPYY/IaricaH apryyabIr
TyXaiiH TOXMOJIIOJI OOJITOH ©epTee aryy/pk 6aiiHa. MitM yupaac I9BIIYY/ICOH UTepa-
LMIH apThiH OYJI Hb 6MH6 CyAJj1aauibiH 00JI0BCPYY/ICAH apTryyablH 6PTeOTIe 'K Y335K
60JTHO. DATI3pP apryyabIH XyBb/, HUIMIOX 3aJIIITYIi 66Tee] Xypai33TIi HOXIeIUAT
TOMBEOJICOH. MOH X0€p 60JIOH TypaBayraap 3pamMonitH OpernernitH yaavoKIaabIr TOO-
I[OOJIONITYMATI3P TTapaMeTPUitH YTThIT 600K 6aiiraa Hb TOOLIOOHBI XYHAPIIUIT apuiira-
caH. ©epeep X316 TOOLI00ION AaXb YAIIIMITH TOO LieepHe. OHOJIBIH YP AYHT XKUIII33
TYPUIMITYyyHaap 6aTajaraaskyysicad 60JHO.



bysar 2

VHTerpo ciiaiH 6airyyiaax, TYYHUIT
X3P3IIIX

“CrutaitH IeXeIT, I0Ka/Ib MHTErpo-CIUIaiH Oaiiryyaax” copBuitd xypasum 2018-2020 oup 6up
OJIOH YJICBIH COTTYYIA, 4 6ryyIa1 X3BIYYICH33C X0€p Hb Web of Science-H nmnaxkT ¢paxkTop
MHJIEKCTIM COTTYY/I, XOBJSTICOH. MOH JOTOOABIH OOJIOH OJIOH YJICHIH 3PI9M INMHXKMUIITIIHUIA
Xypang, 3 yaa WITT3I X33/1YYICIH.

2.1 Jlokasb MHTErpo CIUIaiiHbI YaHapP 0O0JIOH X3P3I/I33

Mowuron ViaceiH Ux CypryynuitH 6arm M. BasprypsB HapblH Ccyajiaaunp, SHKOIEP TOXOO-
POMIKOOp TOHOIJIOTACOH POOOT MAIIMHbI OAMPIIUIBIT TOZOPXOMIOX aCYyIJIbIT CYIa/IK OajiHa.
VI MalIMHbI AYTYIAHBI XyPAIT TOLOPXOI/IK 66X JaaaraBphir - YIUIABIPTII XaMTapcaH Ma-
TeMaTUKuIH cemuHap 2019”-0 TaHMILYY/DK MUK 6TOXUIAT XYCCIH I0M. DHD aCyyaJIbIT
MINIIBIPIIX OHOJBIH HAT MM Hb 9HIXYY CyAaaraaHbl axkuya. PO6OT MalIMHbI apg, 9CBI
YP[I, TAJIBIH XOEp OYTYiif Xyraiiaa OypTrax 9HKOJIEep TOXO0OPOMK CYYPUIYYICaH. JHKOAEDP Hb
TOrTMOJ TajbaiiTaii (Area=L]) 3ait aBaan xyramaar (3ypar r XapHa yy) OYpTraH3. DHIXYY
XyralaaHbl Japaasulbil alllUITIaH TyXaiiH OyTYIHbBI XypZ, v(t)-T X9PX3H TOOL00I0X B3? JH3
TOXMONTOIT, v () YA M3IITAX PYHKIMIAT (0MPOIL00TO0P) TOLOPXOMIOX Hb IMCTO-CIUIANH 3C-
B3JI MHTETrPO CIUIAlH 6aiiryynax 60ay10ro 601H0. IHTerpo cruiaiiH 6airyynax acyyajibiT OJIOH
cyajaauyua aBy y3coH 6anpar [19-22, 28] 33] [34]. dnrasp cymanraa Hb SKUT[, TOP 93P CIUIAMH
6aiiryynaxTait xon6ootoit. Wu 6omoH Zhang Hap [27] askuiig skurg, 6yc TOp A33p MHTErpo
KBagpar cruiaiiH, Kirsiaed Hap [25] askmng nHTerpo Kyb cruiaitH 6airyynax cyjaaraar Xuink
IOX6JITUITH YaHAPBIT CyAascaH 6aiimar. ['9x199 5Ar33p akuiI Hb 133PX aCyYIJIbIT IUAIIX,
xXapaaxaH TOXMPOMIKIYH 10M. YUup Hb 5Ar93p OairyynanT Hb XyralaaHsl [tg, t;| 3aBcap Jaxpb
O6YyX M3 23/UIMIT alllUI/Iafar Hb 60JUT XyraljaaH eHaep Xypaaap TOOI[00J0J XMUitX 60T0MXK-
ryii. bup skurg 6yc TOpPOH A33p JIOKa/Ib MHTErpo KyO CIUIaiiHBIT X3PX3H OaiTyy/ICHBIT SH/I
TaHWJIIYYITbSI.

Te = {to < t1 < --- < tx} Hb [to, t;] 3aBcap AI3pX KUTT, OyC TOP 6a SKMKUT TOPBIH YPT
hit1 =ty — t; 6@KT. v(t) Y1 M3AATA9X QYHKIMITH YTTBIH Tajgaapx M333713J1 0aiXryii XapyuH

22
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<
—~

~+~
~—

[
to tl to t3 t4 t5 T t_1 Ttk t

— — — —— -
— — — —_— —_——_—

— —_— — —_— —_——_——_ -

e — — — —_— —_——_—— -
b — o — — —_———— -
b — — e —_— —_———— -

3ypar 2.1: DHKOZIep TOX66POMKeep OYPTIICIH XyrallaaHbl IIyBaa.

[t;,t+1] 3aBCPBIH 193PX YT OYHKIMITH TanbaitH M35 [ erermceH.
OHOXYY v(t) GYHKUMITH Tesneenerd 600x CIiaiH S(t)-T qapaax HeX1eJsl XaHrax oarxaap
6anryyIbs:

(i) [ts, t;41] Bo0 3aBCcap 6Yp A33p S(¢) Hb KyO 339pTUITH OJIOH I'MIIYYHT,
t; t;

G) & [ S@dt =2 [ ot =1L, i=1,2,-- k.

ti—1 ti—1

3ypar[2.1)60moH (ii) Hexueneec [ = h;I; 600X Hb U3pxMii. Ss(7;)-p Tr XyBaaIT A33PX OJNOH
TUIIYYHTUITH OTTOPTYIAT TIMIIIIZE. Oepeep X103

S3(Te) = {p(@)Ip(x) € C*[to. ti]}-

OH[ p(x) Hb Ty, 193PX KyO XYPTIJIX 39PTUIfH OJIOH TUIIYYHT. [29] askmip aBu y3CIHI3p S €
S3(7x)-T Dapaax x3563pTait LypcamK 60IHO:

S(t) = (1= )*(1 +2)Sim1 + (3 = 26)S; + ha§(1 — O{(1 = §) i, — €S}, 2.1)

9CBIJI

h'2 1 "
S(t) = (1= )81 + 85 — =61 = 2 = Sy + (1 + 8571,
t—1ti1
h;
9Hp S; = S(t:), S = S'(t;) 6onon S = S”(t;) Tamparnan xuiiB. (2.1) 6onon (2.2) -r (ii)-n
opiryyaban

(2.2)
tetiit], €=

, £€10,1].

Si1+ 8 = 2L - %(521 =8, i=12-k (2.32)

Si1+Si:2[i+iL—z(S;’l+S;’), i=1,2,--- k. (2.3b)
(2.3b)-c (2-38)-r xacBan

S+ 8! = 3(Sg -8 ), i=1,2-- kK, (2.4)

hi
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rapax 6a (2.4) TarmmTIansaC

STy + (B = i) 8] = 1y Sty = 2(=hiSi_y + (hi + hi1) S} — hisa Si ), (2.5)

zzl

Oyp Laammadan

2 )
1iSiy +S; + NiSip = hi—l——hiﬂ(sgﬂ -Si1), i=1,2,--- k-1 (2.6)
JH[,
hA
= A= 1
s hi + hipq s

(2.3b)-m i-r i + 1-p conmop, (2.3a)-c HIMXK 3CBIJT XacBaj

1
Ii+ 1y = §(S¢_1 +28; + Siy1) — (h?S':/ L+ (hY + hZy)S! + by SEy), (2.7)
1 1! 1 1
Iiyn — I; = §(Sz'+1 —Si-1) + 24(}1@25@ L+ (b = hZ)S) — hZ ST (2.8)
2.2)-c
S-S Sty — 8
S”/(ti . O) _ =i zflj S”/(ti + 0) _ Ml i (29)
hi hit1

(2.9) 6onoH S;_1, S;;1-mitH TeiinopsiH 3apapraar (2.7) 6om0H (2.8)-1 xapar1aBan

hit1 — h; h? + h?
+12 Sz/ + +6 141 S// (hi—lsm(ti + O) . h?S///(ti . 0))’

h- — h?
h +2hz—|-1 S/ 1+ 6 7 S// (h?,S///( ) + hz+1SW(ti 4 0))’ (210)

i=1,2,- k-1

(2.9)-r (2.10)-1 opnyynban

1
Li+ 1y =25, +

liyn—1; =

2 1
5= P 15 (RittiSiy + 3(hi = Tis1) S — hia AiSi )- (2.11)
(2.5)-r (2.11)-1 xapariaBan
12
iSi1 + 55+ NSy = ———(liy1 — L) + (hi — hi1)S],
i1 i i+1 hz + hi+1( +1 ) ( +1) i (212)

i=1,2, k-1

Tyysaac ragHa (2.9)-r (2.6)-1 opiyynban

/ /
"o Si+1 B Sz’—l

"~ 2.13
’ hi + hipa ( )

Hb O(h; — h;41) HapuitBUIaIBIH XyBbA YHAH. (2.12) maxe S” rumyyHwiir (2.13)-p conuson

12

2 308! BN 1), =
( 3 Z)Sz—1+5sz+(3 1 )S”H-l hi+hi+1

(Iz+1_jl)7 1=1,2,--- ak_]- (214)
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(2.1)-u TacpanTryit 6aiix yanap 6omoH (2.3a), (2.13)-c men (2.14)-r 6mp raprax yagHa. JKurn
TOPHBI XyBb], (2.14) TOrmmMTran Hb CIUIAHBI TaCPAITIYIi YaHAPBIT MATTIX Xapbiiaa [19] 60mox
6a skurg 6yc TOPBIH XYBb/I OPOJIII00 yTraTaii TaCpaJTTyifH Xaphllaa IoM. TITIIUTTITYY-
134, S}, S), 3aXbIH HOX1I6JI 6TeIABOII 9H3 Hb OUTYY CUCTEeM OOTHO. DHAXYY CUCTeM MM TI
3COXUIAT cynanbs. (2.14)-H MaTPULIbIH TUILYYAVIT @;; T3IBIII

Ty = Qi — Z ’aij‘-
J#
T9rBas gapaax rypBaH TOXMOILOM rapHa.

1. XapaB 0 < \; < 36013\ —1<0,2—3)>06ar; =2(1+3))>2.

2. XopaB 1 < \; < 260m3)\ —1>0,2—3)\; > 060m0H r; = 4.

W=

3. XopoB ;<16013)\, —1>0,2—3)\; <060M0HT; =8 — 6)\; > 2.

SN
IN
>

Nitmaac Hb OMAarOHAJIMIH JaBaMraiiiaaTai 00/pK O raHIl IUAATI. IHTepIIoIsSIbIH
KyO cIiaiiHaac siraaTtail Hb S)) 0a S;, HOXLeNYYAI3C TaJHa Sy 9CBAT Sy, Oreriex XaparTaii.
S; 6a S/-uiir i = 0,1, - , k XyBb], 60m0H (2.14)-c onHo. x93 S}, S}, 60/0H S; (3CBAIT
Sk) M3IITAIK 0aiiX XaparTait. UHrasy, X37103PTAM AYPWIITAIX S(t) OMOH TUITYYHTUIH
CILIaliH Gairyy/armiaa.

ViHTerpo crutaifH 6aiiryynaaxaj rypaBayraap 3p3MOUITH ylaMsKIaa 3aXbIlH LATYY, 193D
TACpaJITTYii 6aiix ( @epeep x316311 not-a-knot 3aXbIH HOXITO)

S"(t; —0)=S8"(t; +0), i=12k—2k—1
HOXII6T TOXMPOMIKTOI 6aiifar. JH3 HOXLeNAUNIT S -UiiH X371 A33p 6MUBIII

>\i Z,/—I_S'Z/_I_MZ /ii-l:()’ 12172ak_27k_1 (215)

%
(2.2)-mita TacpanTryit 6aix yaHap

ilbi4-1

6onoH (2.3b)), (2.15) (3H33C TypBaH TITIINUTIS COHIOXO, XaHTa/ITTait) Xxamtaaa Sy,S1, - -,
Sy 60m0H S{/,S7,- -+ ,S) yn Maarasx OyXuitH 2k + 2 TOTIUTTIIUNAH cucTeM 60mMHO. YYHMI
6onoxon MeH (2.2)) racaH MHTerpo CIIaiH 6aiiryynarmaHa.

2.1.1 Jlokajb MHTErpo Kyo CILJIaifHbI 0AMTyyIaJIT

Tacpantryita ya"ap (2.16) 6omo0H (2.3b)-c

X3pBaa Sy, Sy, -+, Si erergsen (2.12) 6omoH (2.17)-r ammrnaan MHTErpo CIUIAMHBIT Xs16ap-
XaH 6aiiryyaax 6010MKTON. [aalmi TOOLOOMON I X3P3T 600X Ty hiyy — h; = O(h?), i =

Si = Nili + pilipa —
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1,2, , k—1 HOXIIe/ 6MeNIaT XyBaaT T;,-T 6apar sKUT TOP II3K HIPIIHI. DHI h = max;<;<,{h;}.
Taraxs3p 6Gapar KU TOPHBI XYBb]T xapbiiaa Hb O(h?) HapUiiBYJIa/IbIH XYPISH/L XYUMH-
Toit. (2.11))-mit 6apyyH rap TaablH X0€p gaxb ruuryyH O(h?)-Taii TOHIYY. DHD 6ara XOMKUT-
I9XYYHUIAT OPXUBOJI

G2
b hi 4 hip
OJpOJIII00 Xapbllaa rapHa. ['9BY 5HY Hb XaHTAJITTal JOX6/T 00K Yagaxryii TY/I CalisKpyyIalT

maapaiaratait. (2.11)-r (2.13)-1 xaparnsBan

2 L.o— 1 I, —I,_ 1
g _ < i+2 i+1 L i 1) n (Aif1 — Aiq). (2.19)

(Iig1 — L) (2.18)

R4 higr \hig1 +hige hioi + Ry 12(h; + hiy1)
JH[,
A = hipiSI 4 3(hi — hi1)S; — hipaNiSE, 1.
(2.9) écoop
A — Aimr = 4(higr + hi — hicg — hiy2)S)
+ [4hi1(hiv1 — hige)S" (t; +0) (2.20)
—4h;(hi—y — h;)S"(t; —0) + D;_1 — Dyy1].
JH[,

h3S"(t; — 0) + B3, 8" (t; +0)
N hz + hi+1 .
Di+1 - Di—l - O(B3), hi—i—l - hl - O(BQ)

D,

a3k y38a1 (2.20) naxp qepBesskuH xaant goropx O(h?) yrratait. (2.20)-t (2-19)-1 opyyimk
6ara XaMKUraaXyyH O(h?)-T OpXuBOI
& _ 6 (Ii+2 — iy Li— 1 )
" hioy 20 + 2Ry + hige \hig1i + hive hici+hi )
i=23, k-2

Yiucan S, i = 1,2,k — 2,k — 1 yIryymsIr TOTIIVTIIMIT alUIIal ofaHo. (2.21)-r
60moH (2.17)-z1 opiyyn6an S} 6010H S; T3C3H OPOIL00 YITYYA 0A0HO. (2.3b)-71 i = 1, k Tk
opnyynaH S;-r xapuH (2.12)-ni = 1,k — 1 6aiixan S;- Tyc Tyc onuo. Kury TopHbl xysba (2.11),
60710H Hb [ZM7])-1 07ICOH M1 TOMBEOHYYZ, 60K XyBUPHA. S;, S; 60/0H S/ T9CH
0JpOIII00 YTTYYAbIT ammriaad C2[ty, t,] MHTerpo CIiaiH 6aiiryyaaxaaa CrjiaifHbl B-6U4Iar:

2.21)

k+1

S(t) =) @Bi(t) (2.22)
1=—1
amuraana [29]. (2.22) naxb KoapduLMeHTyyI Hb
64—1 = 50,
I S S A N
G =S 8 = RS =01k, (2.23)

g1 = Sk,
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6ariaruiir [30] askuIL TOTTOOCOH. DHI t 3 =t o =t 1 = tg 6aty = tyy1 = tpio = tprz. Oi-
ponoo yrryyx S;, S! 6omon S/ -r (2.23)-1 opayynban &; T3C3H OPOIIL00 YITYY MOH OJIIOHO.
Witmp, 6u, TOKaab MHTErpo KyO CIUIAMHBIT B-0MwIar Aypciaaiadp 6airyysuiaa. bairyysican
CIUIaiiHbI TacpanTryit 6aitx S(t) € C2[to,t,] yaHAPBIT KM 3ypraap y3yy16a:1 3ypar
JKurp TopHBI XYBb[, ¢v; KOabduiimeHTyyn Hb [31]-1 6aiiryyncaH cruiaitHbl Ko3phUlMeHTyyz-
Tal aauIxaH I0M.

w
T

N
T

-
T

15

L L L L
10 15 20 05 10 15 20

@) S(t) (b) 5'(t) (©) 5" (t)

3ypar 2.2: v(t) = 2 — \/t(2 — t)-H XyBbJ, JIOKaJIb MHTETpPO Ky criaith S(t) € C2[to, ty].

2.1.2 AnpaaHbl IIMHKUJITI3 O0JIOH X/I09P Xajarajax yaHap

v(t) € CO[to, ;] DyHKIMITH MHTerpas yTra [; ereraceH 6air. v(t) dyHKuuitH TeitIopbiH 3a-
napraar (ii)-z opiyya6an

I o hi-i-l / hzerl Vi h13+1 /// 4

i+1 = U; + 9 Ui + 6 Ui + 24 + O(hz+1), (2.24)
hit1 h? hf’

Iign = vig1 — TJFU:'H + 6+1Uz/',+1 2?;1 Uity + O(hi‘rl)

he , W2, R}

I = v — —v 4+ 2o — Lo + O(hy). 2.25
OHA v; = v(t;), vl = V' (), v) = v"(t;) 6a v) = v"(t;). TeiinopsIH 3agapraa 60ym0H (2.24)-x i-r

i + 1-p opiyyaaH TOOL00 XUMBIJI

2hip1 + hivs , | 3hiy 4 3higihia +hi,

5 v; + 6 v;

+ 4h?+1 + 6h12+1hi+2 + 4hi+1h12+2 + h?—&—? U/-”
24 !

Lo =

(2.26)

+ O(h").

Apunxanaap (2.25)-1 -1 ¢ — 1-p opayynban

2hi + hi1 N 3h2 4 3h;_1h; + h?_l,u,,

I | =v; — , 4

1 v 2 vz 6 %

AhE 4 6hZhi + 4k ki + R o4 O,

24
(2.26)-c (2.24)-r xacBan
2 2hip1 + higo 3h2,, + 3hij1hio + h2

Iio—1 — i+1 it2 n i+1 142 /// 3 2.27
hit1+ hi+2< w2~ lin) = o+ 3 vt 12 +O(h%). (2.27)
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MeH TeceeTaireep TOOI00JI0J XUIBAJT

2 hit1 — h; h3 + h3 hi , —ht
Ii i ]i _ i+1 i i+1 " i+1 i (4)
B en = D) = v e o S G0t )
+ O(hY), (2.28)
2 o 2hi4hia 3R+ 3hihiy 4 hi o+ O
m(ﬂ Iiy) = v 5 Vit B +O(h%). (2.29)

OAr33p TOOLLOOHBI YP AYHJ,:

Teopem 2.1. v(t) € C%[ty,t;] 6a S; ub (2.3b), 2.17)-p, S up @2.11), (2-12)-p, S/ up (2.13),

(2.21)-p Tyc Tomopxoinoracon 6aiir. Tarean 6apar KU TOPHBI XYBB], Japaax YHA/Ir3d Xy-

YMHTIN
S'—o' =0(h?), i=0,1,---,k, (2.30)
Si—v=0(0hY, i=0,1,---k, (2.31)
S;—v;=0(*), i=0,1,--- k. (2.32)

Bamaneaa. 3xn33p (2.30) yH1r99T raprasi. 6oioH (2.29)-c

6 Livo — Iy I — I y o bi " 2
- + ="+ O(h 2.33
hi—1 + 2h; + 2hi11 + hiyo (hi—f—l +hiyo hiy+ Ry ) RENTE (7). (2.33)

JHIO

3(hiyy — hi) + 3(higrhivs — hihio1) + hi .y — b7y

bi = = !
h;

(2.34)

Bapar sKur TOpHBI XYBbI v}’ TULIYYHWUIT ©MHOX Ko3bduiment O(h,, 1 — h;) = O(h?) yrraraii.
Witmp, (2.21) 6omnon (2.33) xapbljaanaac

SI—o! =0(h?), i=2,3,-- k-2
YnacsH ¢ xyBbp, (2.30) yHIIT39
Ai(STy = 00) = (ST = v]) + i SFy — o) = =iy — o] + i) = O(R?),

xapbliaaHaac rapHa. CyyamitH Xxapbljaa Hb not-a-knot 3axbIH HOX1I6/Ie6C LYY/, MOPAOHS.
XapaB v(t) € C° 6on (2.28)-r (2.11) ammrnasan

~ 1 B ) )
Sim= E(him(sl{l_l —v_1) + 3(h = higa)(S7 = vf) = hisa Ai(SH — viha)
2 1
o iy e = ) = v Uiy o 3(hs = hi)o = hia o)
1 S o ~
B E(hiui(sgl_l —0iy) + 3(hi = hisa)(S] = v)) = haa Xi(SHy — viy)) + O(RY).

(2.33) 60m0H (2.34)-r i — 1 60I0H i + 1 XyBbJL ALIMIVIABA

Piptibi—1 — hip1Aibiq U(z)

7.4
= +O(hY).

hiui(s’z{Ll — ) — hi+1)‘i<‘§l{/+1 - Uzl'l+1) =
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Witmpo 6un

Si—vi=0(h"), i=3,4,--- k-2

1

YHOJIT93T raprax 4agHa. YJAICOH ¢ YITYYObIH XyBbZ, (2.31) Hb

12
= —— i1 — I;
h; + hi+1( i )

+ (R = hisa) (S =) + (hi — hisa )V — pvj_y — 50 — Al = O(RY),

Mz‘(g;—l —v_q) + 5(51, — ;) + /\i(gz{+1 — Viy1)

xapbliaaHaac rapHa. CyynuitH xapbiiaa Hb (2.12))-c mepaex Hb Tomopxoii oM. Llaammn6an

(2.17), (2.24) 60moH (2.25)-c

3 hihisy ) )
S“””:&L+“%Hf“7££@A$Q—WLJ+3®$—@U+A4%H_@%»
hih;
=0 = g oy 4+ 30f o+ hel) (2.35)
= 24+1 (Mz(slll_l — U;l_l) + 3(5@” _ UZ{/) + )\Z(SZ/{H N U;/-f—l)) + O(h4)

WHrax29p (2.35) Hb (2.32) yHarasri = 1,2, - - - | k — 1 gyraapyyablH XyBbJI, XYUMHTI 60I0XBIT

Xapyy/ok 6aiiHa. i = 0 3¢Bay ¢ = k 6aiiBan (2.32) yHanras ub (2.3)-c MmepaeHe. Il

Canamx 1. Teopem 2.1} 6aTanraaHaac y33xsf LyPbIH KU GYC TOPHBI XyBb

Si =l =O(h). §i—vi=0(R). 5 —v,=O®)
YHOJIT33 XYYMHTIIN.

Canamik 2. (2.30)—(2.32) yHO1r99 Hb 36BX6H 3aHTM/IAAHBI I3TMITH XYBbA, XYIMHTI. [30,
Theorem 2] 60101 Teopem r almriaBaj ereraCceH 3aBcap A33pPX AYPbIH LATUIH XYBb],
YHO/IT93T raprax 6070MKTOi. YHIX93p Gapar Xury TopHbl xyBba Teopem 2.1} 1 Hoxuenyyn
6uemk Haiisan (2.22)-p TOmOPXOiIOrICOH S(t) T0KaIb MHTErpo Ky6 CIIIaiiHbI XyBb/

1S () — v ()| = O(R*™), r=0,1,2,
YHOJIT33 XYYMHTIN.

Teopem 2.2. X3p3B 6apar sKuUrg TOpHbI XyBb Teopem H HeXIenyy[, 61emk 6aiiBai S,
6010H S/ ko3 uumenT 6yxuit (2.2)-p TOLOPXOIIOIACOH S(t) MHTerpo Ky6 CILIaitHbl XYBb]

ISP () = v ()]l = O(R*), r=0,1,2,

YHOIJIT33 XYUYUHTIIN.

Canamk 3. X3p3B 6apar KU TOPHbI XyBbI Teopem HOXIIeNYY/ 61e/sK 0aiiBasl
ISP(t) = SO (H)[loo = O(R*™), 7 =0,1,2,

YHOJIT33 XYYMHTIN.
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BajiryysicaH cruiaiiHbl TYAr3p YaHaphIT cyganiraasi. ; erermajiyyauiir

ai—ai_120, i:273,"',k5—1, (236)

2(I,L-+1—IZ-) B
Tt Yusu

1193 3H3 TOAOPXOMIIONT Hb 23, 24, |32] askinyy[ Taxb TOLOPXOMIONTON UXKMUII yTraTail oM.

HOXIIeJ1 OMeI9X33p ereracoH 6aiiBa ryArsp yaHapTaii 6aiiHa ragsr. DHI, a; =

Teopem 2.3. [; ereraauitH OJOHJIOT IyArap 6a

B hio1 + 2h; + 2hi 1 + hiyo
1 T 3

6aiir. XapsB

haay + hgaz > haay + haaa,

P2k + hi—sa5—1 > hy_sap_3 + hy_say_s,
HeX1en 61enasr 601 t € [ty, ty] 6YX YTTBIH XYBb], 5”(15) > ( 6aiiHa. ©epeep X163 g(t) Hb
[to, 1] 3aBcap A23p ryarap GyHKII.

v; erergyyn ryarap ([24]-r y3) 6aiix Hb

Vi1 — U; UV — Uj—1

— >0, 1=1,2,--- k-1 2.38
h,,LJrl hl — ) 7 ? J 9 ? ( )
HOXI11eJ1 OMeIdXTaii aauiIxaH.
Tenrep GyHKIMITH XyBb],
2 Vit1 — Y4 Uy — Uj—1 " 72
— =uv, +O(h 2.39
Bt i ( P h ) v o, ®59

YHIT33 XyunHTIit. Witmp, (2.21)), (2.30) 60m0H (2.39)-c

2 Tiyo — Iiq I — I; 4 - 2 Vi1 — U Vi — Vi1
hi \Pis1+ hiys  hig +h; T hi+ iy hiya hi ’
Hb O(h?) HApUIBWIAJIBIH XYPIIH, XYUMHTIIA. Taraxasp (2.36) Hb O(h?) HapUiiBUIAIbIH XY-

PI39HL Guenaxuiir aryyyk 6aiina. Teopem [2.2]6a[2.3| b 6umHMit GaitryyncaH JoKasb
MHTEI'PO Ky0 CILIaifiH Hb JOXOJITUITH O0JIOH I'yArsp 6aix yaHapTaii 60J0XbIT Xapyy/IK OaiiHa.

YHOH33 MHTEPIOJISIBIH Ky6 crutaiiH S(t) € C? ryarap 6aiix XypaniasTait Hexuern [26]
2Al2 _/vLiAzzfl _)\iA?Jrl > 07 L= 1727”' Jk_ 17
205 — AT >0, 2A7 — A7 | >0,

6aiimar. Oug A? = f[t;_1,t;,t;11]. DHAIIC V3BT OMIOHMIA GATYy/ICaH JIOKAIb MHTETPO KyO
CIUIaiH 601moH HOX1eJ 61eaXa, J I'YArap 6ajiraa Hb MHTePIIOJSILIbIH Ky6 cIuiaii-
Haac JaByy YaHapTai 60JIOXbIT VUITTIHI.

DAT35p OHOJBIH YP AYH Hb SIH3 OYpUITH TOOH TYPIIMJIT 193D OaTanraaskcaH 6eree 0y oHI
36BXOH 00T XyrallaaHbl XyBb/I Xyp/I 0JIOX O0JIOH 6airyyscaH CIIaiiHbI IYAT9p YaHAPBIT Xa-
pyyJiax SKUIIIIT TAHUIIYY/TbsI. XyralaaHsl 3xJ137 to = 0 6a gyryit v(t) = 0.9 sin(wt) 4 0.76¢ Xyp-
maap xemesiceH 6air. dun [ = 0.1. Buauuii 6airyyicad CIuiaiy KMHXIHD QYHKIMIAT caiiH 16-
X3k 4azicaH 60s0xbIr 3ypar 2.4} ¢ xapx 6071HO. XypAbIr HapUiiBYIa cajiTait oK yagBai po6o-
ThIH Gaiip/iasa 36B TOLOPXOMIOTIOXK 600XbIT 3ypar [2.3|xapyy/ok 6aitHa. DH3 aprbiH AaBYY Tal
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—— wheel A
—— wheel B

y [meter]

x [meter]

3ypar 2.3: Baiipimt TogopxoiacoH 6aitnan, M. BasprypsB HapbIH CyIaJraaHbl rap 0MIMII93C
aBas.

121314151617

3ypar 2.4: YprayskKunk Oyii XeeareeHmnii XyBbl Xypi.
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20
18]
16
14

12

3ypar 2.5: CrutaiiHyyabIH TYATSp YaHaPbIH XapbIlyy/IalT.

Hb XYPAbIT O0ANUT XyramaaHd TOOI0O0/DK Oajiraaraapaa a4y XojJ00TA0/ITON oM. OMH6 TacpaT-
TYVi YaHapbIT WISPXUIANIIX 3ypar Jaxb CIiiaiH Hb 719 = {0,0.05,0.1,0.4,0.7,1,1.3,1.6,1.9,1.95, 2}
TOp H23p GaiiryynaracaH. I'yarap yaHapsir 3ypar c XapHa yy. DJHI Hb v(t) = 2 — /(2 — 1)
byHKUMIT TexXceH 6ereen (a) 3ypar Hb CIUIAliH TacpajaTryii YaHapTail 6yiy cucTeM
TOTIIATTII O0I0K TapcaH yp AYH oM. Tareaj (b) 3ypar 193p 6a craiHeIr S;, S/,
S” 60710H &; K03QbUIMeHTyyATall 6aiiryy/ICHBIT Xapyy/acaH. 3ypraac xapsa (b) Hb IyAr3p
yaHapTaii 6011 (a) TYArsp OuIIl X27103/139H CaBIaCHBIT Xapyy/DkK OajiHa.

2.2 HHTerpo ciiayiHbl XapbIyy/Ia/iT, Oycaa yaHap

OH)3 X3C3rT [ZM7, [ZM8, ZM9| axxnyyn, naxb rosn yp LYHIYYAUIT TOMMIIOBOJ:
(2.22) nypcmanuith Ko3bbUIMEHTYYIbIH XYBb]I

2,2
hiw

p—1 = So — howmg + My,
hi — hi_ hihi—q

2 2
pUNny1 = SN — hy_jwmpy + N; My,

6anaruitr [30] axXuig TOrTOOCOH. DHA YaHAPT TYATYYp/aH Ky6 criiaiiHbl KO3 OULIMeHTYYabIT
MJT X37103P33P TOOLI00I0X apTbIT O0OBCPYY/IK KyO CIIaifHYYIbIH XOOPOH/, XapbIlyy/aslT
xuiicaH [ZM7]] 6omHoO.

Ky6 crutaitabl xyBba, C%[a, b] aHr1[ 6aiix Hb reIrep YaHap caifTait 600XbIT MITTIAIT XU U
X3J105p Xaarajaax yaHap Hb aJgarauar ayTargaaTaii. Xa103p Xaaraaaxryit 6aix Hb 3apyuM Ye[
anmaa MXTai 60K X3763513971 Yycraaar. [ZM9] axkui ryarap 9CBaJ CoX YaHapTail ereraen
{I;} xyBbp C'' aHIMITH X37169p XaAranax yaHapTail MHTErpo CIUIaiHbIr 6ajiryynaH Xon60rmox
TeOpPEeMYY/IbIT 6baTasicaH 60JTHO.
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YHACOH Yp OYHT CUIipYY/I6aT:

33
JIokasb crutaiiHbl KO3O@UIMEHTYYABIT TOOI00JIOX MJI TOMbEOHYY/IBIT allIUT/IAH TypaB 60I0H
TaBaH IMaroHaJbTali MaTPUIbIH YPBYYT Xsisibapaap TOOI[00I0X aprbiT [ZMS8] axkniig aBY Y3CoH.

A =Tri-diag{l, d, 1} Hb |d| > 2 6aiix yTraTaii rypBaH AMaroHanabTai MaTpul] 6air. Taran
TYYHMII YPBYY MaTPUIIbIH 37IEMEHT «; ;-T apaax W1 TOMbEOr0Op TOOLI00JIK OOJHO.
1 3d* + 8d + 2
Qi = = )
d— 7 3d3 + 8d% — 4d — 16
§+3d+8
3
Qiit2 = )
T30 4 8d? — 4d — 16

1-— dOéii
Qi i+1 = 9 )

Q= O(n"), |i—j|>3.

(2.41)
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IlIpeaHrepmuMH TArMMUTIIIUNH
IIUIAAVIIH TOOH 0a YaHapbIH cyaajraa

CypmanraaHbl 9H3 YMII3/193p akagemuyd O. UymyyHOaaTap 0/I0H YJIChIH 3PA3MTIATII XaMTpaH
WBP-2M X3M23X HETPOHBI MMITYJIbCOH PEaKTOp A33P HEMNTPOHBI 6a 1emMuitH Gpu3mK 60JI0H
XaTyy 6a MIVHT3H TeJIOBT OPIIMX MaTepUasIbIH Cyajraa, HyKJIOTPOH X3M33X XyPAACTyyp 133D
XYH/, MOHBIT acap eHAep dHepruTait 60ATONM Hb XypAacrax ux 3HepruTaii ieM, 3131 6eeMCuitH
bu3uknitH TypmmiIT cypanraa, Y-400 6a Y-400M xaM33X XYHI, MOHBI XYPAACTYYP 133D X3T
XYH[, XMMMITH 37IeMeHTYYAMUIAT CUHTE3JI9H raprax aBax cygajiraa, ¢a3aTpoH X3M33X IIPOTO-
HbI XypAACTYYyp [33p LAlparuitH aHaraax yxaaHbl CyJiajiraar siByy/k 6aitHa. Yr xaMmTapcaH
CymairaaHbl yp OYH I3JIXMiA HIp XYHATH “Nature physics” coTryy/s X9BISIACIH Hb OHIIOX
yiin ssepan o]

1. MockBaruifH ux cypryyanitH 6oyoH benbru ViacbiH XaTyy Oue, HaHO-TEeXHOJIOTUITH

i

VHCTUTYTUIH SpA3IMTIATI XaMTpaH *MAIBXTIi” 3JIEKTPOH LOMTII, 3CB3JI UMITYJIb-
CUIH OTTOPTYIA[I aTOM LIeMYYA, 60JI0H MOJIEKY/TYY/I TycraapiaracaH MoTeHIUaTyyaTai
XapW/ILaH YAIWISX MaTeMaTVK 3arBaphIr CyLaacaH. YT 3arBapbir YCTOPOTUMITH aTOM,
YCTOPOTUMITH MOJIEKYJ TaJHBIH X3T O0TMHO MMITY/IbCTI¥ JIa3epTait XapuilliaH YATuIsX
YWITWININAT CyjIaxaz X3pomisB. buIHNUI 3arsap Hb COPOr YCTOPOTUYNIH MOH XapWILaH

YIATWISNMITH 6ara paguycblH MYKU]L XaHTaITTa caiftH axkuyuIak 6ajiraar xapyyiacaH

2. X0€pooc 3ypraa XypTaIx X9MsKI3CT CUMILIEKC My>kaap aBCaH MHTErpaibir 6010X HatM
XYPTIJIX 9pIMOUITH, 3epar KoadduiimeHTyyn 6yxuii 6yx 3aHTMIaaHbl ATV Hb CUMII-
JIeKC IOTPOO opuiAor I'aycChIiH TOPINUITH KBaAPaTypPblH TOMbEOHYYABIT GaTyysICaH.
OArasp KBaAPaTypPbIH TOMbEOHYYIBIT XOEPOOC 3ypraa XypTaaxX X3V K33CT SJUIUIIC/IAT
TOPJMITH 3aXbIH OOJIOTBIH MIMIAUIAT TOTCTOIOT 3/IeMEeHTUIH apraap eHIep pIMOuiTH
HapuiiBWIaNTairaap 60g0X0Md X3Pk OHOMBIH (PU3MKUITH 3apUM acyyaIyyIbIH MaTe-
MaTMK 3arBapyya A33p TOOH TYPUIVITYYABIT XMiiCIH. JKuII93 60JTOH TypAaxam, akcuasn

ITajin6ap: Manaii Tecmita 6aruita cyanaad O.UyryyH6aarap yr 6yTao/IMitH XaMTpaH 30XMOrdY 66ree]] Tec/Ieec
YT CymajaraaHg, XepeHre 3apiyysnaaryii 601H0. JH3 6YTIMuitr MOHTOM YIIChIHXaa CyLIaaqyga TyTr39H J3r3pyyasx
30pWITO0D 30XMOTYIbIH a/16aH €CHbI 36BLIOOPINITH AATYy YT TalijlaHA 6Yp3H 9X33p Hb XaBCpajTaap opyyicaH
60JHO.

34
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TOTTI X3MTI¥ MTOTEHIMATYYIbIH XyBb, CAPHMIBIH aMILTATYIBIT (XOEP X3IMKIICT O0/10-
r'0), MOH T'eJIMIfH ATOMBIH YHICOH TOJIOBUIAT O0ACOH (I'ypBaH X3MK33CT 60/IJIOT0) TOOH YP
IOYHTYYIMUIAT 4 yrasp apaMOuitH HuiiaanTaii HymepoBbIH apraap 60[COH Yp IYHTYYATIM
XapbIyY/K, HApUIIBWIAIbIH TOAUIATY TOOI[00JIOX XyTallaaHbl XyBb, OMIHNIA apra UIT
ImaByy Oaiiraar xapyyscaH. Xaprajasax KOMILIEKC ITporpaMmyyabir Fortran 6omoH Maple
X9J1 199p OUUCOH.

3. Tererniid HIPIMKUT @paHKDYPTHIH UX CYpryyauiid cygnaaunp Petra III cuHXpOTpOH
(DESY, I'amb6ypr) m23p COLTRIMS (COLd Target Recoil lon Momentum Spectroscopy)
IeTeKTOPBIH TyCAaMIKTalraap 4eaeer rejimiiH aToOMyyz, A33PX KOMIITOHbI CApHUIIbIH
IIMHK YaHAPBIT CyIjIaxX TYPIIMIT XUIK, 2.1 K9B sHepruTaii GpoTOHYYIbIH KOMIITOHBI
CApPHWUJIBIT TeJIIAH aTOMBIH MOHWIOJIBIH O0CT0 SHEPTUIiH (6.X. TeIUitH aTOMbBIH IaH MOHY-
JIOJIOJIBIH TPOLECCHIH MWDKUITUIH 3Hepru 24.6 3B) opuump cymancad. YT TypIIMIITBIH
OHOJIBIH 3arBapbIl MockBaruitH Mx CypryyamitH cyajaaumaTai XxaMTpaH 60JI0BCPYYIIK,
Xaprajasax TOOIIOOT XMiiB. X0JI000CT 371eKTPOHYYyIaap CapHMUCAH LaliparuitH OHIIMITH
TapXaJIT Hb TOMCOHBI TOMBEOTOOP OrerAIer YeI66T JEKTPOHYYIaap CAapHMUCAH Lialpa-
TUIAH OHITUITH TapXaJITaac 3pc suiraatai 60I0XbIT XapyyiacaH. OHOJ TyPIIMITBIH YD
IOYVHTYY, XaHTaJITTai caiiH ToXUp4 6airaar y3yy/acsH.

4. XaTtaablH ATOMBIH SHEPIUMITH MHCTUTYTUIH Cy[IJlaauMaTai XxaMTpaH XyHI 6eeMyyn
(6*Ni+'°Mo, %S + *8Ca) H3rI9X ypBa/IbIH (CAPHUIIBIH) OHOMBIH ToOL 00T KANTBP kom-
JIEKC IIPOTpaMMJ, 3apUM HIMIIT 66pusienT opyyk xuiiB. KANTBP komrIuiekc mporpamm
Hb 0ara sHepruitH My>Xup 4 spamomitH HapuiiBuianTait HymepoBbiH apraap 6oaa0r
CCFULIE] MporpamMmaac wiyy TOrTBOPTO¥ yp AYH erd 6aiiraar xapyysncas. bug CCFULL
MPOTPaMMbIH aJilaar O/iK 3aCBap XMICIH. MeH 3H3 TyxXal yT MIPOTrpaMMbIH 30XMOTYM]
Hb M3JI3T/IC3H, TPOTPAaMMBbIH a/ilaar XyJI35H 36BIlI6epY 3acBapiiacaH UIMH XyBuabapaa
MUPYY/ACOH. ['9COH XMt u 6ara SHepIruiftH MY>KIU, Jaxb YPp AYH calisKpaaryii.

5. ®panibiH MeTIl XOThIH ATOM MOJIEKY/IBIH MOPTOII00HMI Tab0paTOPUITH CyIaaadm/I-
Tait xaMTpaH H MO/IeKy/bIH (TypBaiCaH YCTOPOruMitH MONEKYIIbIH OH 6yioy 5 61enitH
607,10T0) YHICOH OOJIOH 606TICOH TOeBYYANUITH sHepruiir Slater TepinitH cyypb GyHK-
Y/ auraaH 60acoH. J1oarnonsl GYHKIYYA Hb Dy, TPYIII TOTI XOMTIi 6aiix €CTOIA.
ererficeH 7 mapameTpTait cyypb GYHKI] Hb 2 9JIEKTPOH, 3 ITPOTOHBI XYBb/, TATII X3MTI
oyoy 2*3!=12 rumryyHssc 6ypasHs. YT cyypb QYHKIIYY Hb 3JIeKTPOHYY, IIPOTOHYY-
maac xoj 6aitxaf, 36B aCMMIITOTMK Orfier yupaac (HUMIT 7 + 7 = 14 mapamMeTpTait) 24
TUIITYYH OYXuii JONTMOHBI GYHKIL Hb X3/9H 3yyH Gaussian TepanuitH cyypb QyHKIYY,
X3P3MIaK OOMCOH Yp AYHTOM XaHTaATTail calid Toxupu 6aiiraa 6oiHo. Slater TepanitH

2A.A. Gusev, O. Chuluunbaatar, S.I. Vinitsky and A.G. Abrashkevich, KANTBP 3.0: New version of a program
for computing energy levels, reflection and transmission matrices, and corresponding wave functions in the

coupled-channel adiabatic approach, Comput. Phys. Commun. 185, 3341 (2014)
SK.Hagino, N.Rowley, T.Kruppa, A program for coupled-channel calculations with all order couplings for

heavy-ion fusion reactions, 123, 143 (1999)
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Van de Graaff

accelerator i i
ion detection

3x3 mm?
Slit A

gas jet
magnet T 0.5x1.5 mm? 4
ﬁ osc. E-field Shit €

2m
magnet 2m 5 15m i i i \J
0.5t mem* 28m ia.s mio.s m; z
it B
stitd 1x2mm? i X
SlitD
electron
detection

10“5—

FDCS [cmP/eV a.u. rad’]

j‘.l.l.l.l.l

] o HE o, e
-180" -150° 120" -90° £0" -30° 0° 30" 80" H0" 120° 150" 180°
L)

3ypar 3.1: D7IeKTPOHbI CAPHUIIbIH S3HepIH 2.5 + 1 eV, MWDKWITUITH UMbITY/IbC ¢ = 0.5 + 0.15
au., ¢=1.0 £ 0.25au, ¢=1.75 £ 0.4 au.

CYypb OYHKIYY X3PIII2X3/I rapaar rojl XYHIPJI Hb OyX MaTpUIIbIH 3JIEMEHTYYH Hb 6D
MHTerpaayygaap WispxXuiiormior.
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Solving Nonlinear Equations
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Abstract We propose a new family of optimal eight-order methods for solving nonlinear equations. The order of
convergence of proposed methods verified using sufficient convergence conditions given in [6]. Using of sufficient
convergence condition allows us to develop new optimal three-point iterations. Various numerical examples are considered
to check the performance and to verify the theoretical results. Numerical comparisons of proposed methods with some
existing methods are made. The test results are in good accordance with our study.
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1. Introduction

At present, there are many optimal eighth-order methods
for solving nonlinear equations (see, e.g., [1, 2, 3]). They
require complicated convergence analysis that is feasible
only by symbolic computation, although they produce high
accuracy. The interest for these methods has renewed in
recent years due to the rapid development of digital
computers, advanced computer arithmetic and symbolic
computation. In this note, we develop a family of
three-point methods with optimal eighth-order convergence.
In Section 2, the new family is developed and its
convergence analysis is discussed. Unlike the usually
considered convergence analysis here we first time used the
sufficient conditions under which the three-point iteration
have the eighth order of convergence [7, 8]. This allows to
simplify the proof of theorem and to reduce tedious
calculations. We also discussed similar theorems given by
Sharma and Arora in [4, 5] and by Petrovic et al in [3]. The
theoretical results proved in Section 2 are verified in
Section 3 by considering various numerical examples. A
comparison of the new methods with the existing methods
is also given in this section.

2. The Family of Methods

*

Let X be a simple zero of the function
f(xX):DcR—>R and X, be an initial approximation

* Corresponding author:

otgondorj@gmail.com (Kh. Otgondorj)
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to X . We consider the following simple three-point
iteration
_ f(x,)
Yo =X~
f'(x,)
Zy = 94 (%0 Yo )s 1)
f(z
Xoup = Zn — @, '( ) , n=01,...
F'(x,)

Here @,(X,,Y,) is any two—point optimal fourth order
scheme and ¢, is given by the following formula

a. = f’(Xn) [f’(xn)_ f[ynvxn]_|_
" @1z Yol - Flze % DU () + Tz, %]

flz.,x ]
Sl s E |
+Tn fr(xn) J’ (2)
where
f[r,sp= &)= 3)
S—r

Note that any two—point optimal fourth order iteration can
be written as [8]:

_y = 1Y)
Zn=Yn Tnf’(xn)’ (4)
or
Z, =X, —7 f(xn)’ ©)
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where

_Tn_l P2 _f(yn)
e, T f(x) ®)
7, =1+0, +20° + BO° +y07 + ...,

with some constants f and 7.

Theorem 1 Let the function f(X) be sufficiently

differentiable in a neighborhood of its simple zero X" and
@, (X,,Y,) isan optimal fourth order method. If the initial

approximation X, is sufficiently close to X", then the order

of convergence of iteration (1), (2) is 8.
Proof Using (1), (6) we have

f[Xn’ yn] = (1_9n) f ’(Xn)i

1.,
f[ynizn :__f (Xn)(l_Un)7 (7

n

£x,.2,]= = £/(x,)(1-6,0,)
Tn

where
f(z
o, =), ®
f(y,)
Substituting (7) and (8) into (2) we get
7.7, T
a, = nn1+r nU _gnun 1(9)
(ZTn _fn)(l_ rL Un) ZTn(l-l'Tn)
2r, -1, T,
Using the well-known expansion
1
=14 X+ X+ X+, (10)

1-x
One can write (9) as

2
T

a, = 2—"_(1+(1+ 20,)v,)+0(83). (1)
Tn

n
Since

2

n_=1+20 +(B+1)07+(B+y-HO +...,

T

2r, -7,

then from (11), we obtain

o =(1+29n +(B+1)02 +(2B+y-H8 +..)(1+(1+20,) :E;ni +

+0(0%))=1+20, + (B+1)6% + 2B+ —4)6° +

+(1+ 29n)1f(2“)+0(0:),
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f(z
in which we have used M=O(9nz) . Then by
fF(yn)
Theorem 1 and 2 in [7, 8] the order of convergence of (1) and
(2)is 8.
It is often used two-point iterations (5) with functions
[1-5]

_ 1+(B-1)6, + o2

" 1+(8-2)6, 49
and
_1-6.+6°
T = a-ey (14)

In [10] it was developed optimal fourth-order method

with parameter
_1-1-46,

’z’ -
" 20,

According to (15) we call the iteration (1), (2) with (15)
the eighth—order iteration based on Zhanlav’s fourth-order
method. Similar theorems for (1) presented by Sharma and
Arora in [4, 5] under choices

_ F'(¥) flz,, ¥a]

(15)

ot x 1@z, v - flzox]) Y
and
f'(x)-f

o, == T %1+ T12,, Y] an
2.I:[Zn’yn]_ f[zn’xn]
and by Petkovic et al in [3] under choice

f!
(X,) 8

o 20f 1% 2, 1= 1% o))+ £ 1Y 201+ (o = 2) F1Yn X0,
where
] — f[yn’xn]_ f’(xn)

Yo =X, .

Now we consider the three-point iterations (1) with o,
given by formula

FLYas %0 X,

m

a, = Za)ia,i], w; €R, Zm:a)i =1. (19

i=1 i=1
Here by ari] we denote any functions satisfying the

condition (12). In particular, as ari] one can take functions

(2), (16), (17) and (18). As before, using the sufficient
convergence conditions (12) it is easy to prove that the

convergence order of three—point iterations (1) with &
given by (19) is 8.
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3. Numerical Experiments

In this section, we have made some numerical
experiments on our proposed method and given some
numerical comparisons with existing optimal eighth order
methods as various examples. We consider the following test
functions used in [5, 6]:

f,(X) =sin(x) - x* +1,

X ~1.404491648215

£,(x) = xe** —sin?(x) +3c0s(x) +5,
X ~1.207647827130

f,(x) = In(X* + X+ 2) — X +1,

X ~4.152590736757
f,(x)=(x-1)° -1, X =2

All computations have been carried out using Maple 18
computer algebra system with 1500 significant digits and the

0—250

fixed stopping criterion & =1 .InTables1-4, ¢, and

T, with some parameters are considered in first and in
second columns, respectively. The number of iterations N ,

the absolute value | X, — X | and the computational order

of convergence (COC) are displayed in theseTables as well.
To verify the theoretical order of convergence of our
methods, we calculate the computational order of
convergence using the formula [6]

-x )
2= X )

For a comparison, we employed the Sharma-Arora
methods with function (16), (17) and method given in [3]
with function (18). From Tables 1-4, we see that the COC
perfectly coincides with theoretical order and the new

method (1), (2) with function (15) is comparable with
existing methods.

I =X ] %,
In(Ix, ;=% |/]X,_

Table 1: Performance of methods as a, chosen by (2)

N |a* — x| cocC N |z* — xp| CcoC
iy Tn filx), x0=12 fa(x), wo=-1.3
(15) 3 1.483(-474)  8.00000 3 1.481(-439) =.00000
(14) 3 7.146(-422)  8.00000 3 3.594(-453) 8.00000
(2) =2 3 2.952(-299) 8.00000 3 2.953(-382) 8.00000
(13) .8=1 3 3.907(-402)  8.00000 = 8.460(-417) =.00000
=0 3 7.140(-487)  8.00000 S 1.257(-612) 8.00000
Ja(x), x9=3.0 Jalx), xp=19
(15) 3 3.155(-494) 7.99999 3 1.101(-339) %.00000
(14) 3 2.122(-431) 8.00000 3 3.749(-276)  K8.00000
(2) gi=2 3 2.390(-377)  8.00000 | 1.244(-1326)  8.00000
(13) =1 3 2.357(-409)  8.00000 | .2. 10(-1921)  8.00000
g=0 3 7.977(-456)  8.00000 3 3.021(-365) %.00000
Table 2: Performance of methods as a, chosen by (16)
N |z — zn] COC N |z —a.] COC
n ;i filz), =12 falx), xp=-1.3
(15) 3 7.2890(-480)  8.00000 3 1.361(-500)  %.00000
(14) 3 5.093(-409)  8.00000 3 8.654(-503)  8.00000
(16) =2 3 6.557(-467) 7.99999 3 5.817(-470)  8.00000
(13) =1 3 2.658(-397)  8.00000 3 1.311(-486)  8.00000
B=0 3 1.870(-433)  8.00000 3 2.294(-566)  8.00000
fa(x), x9=3.0 fi(z), Te=1.9
(15) 3 1.369(-566) 7.99999 8 1.177(-380)  8.00000
(14) 3 1.047(-539)  8.00000 3 8.423(-360)  8.00000
(16) 3=2 3 1.754(-527)  8.00000 3 1.742(-262)  8.00000
(13) i=1 3 6.122(-532)  8.00000 3 7.752(-357)  8.00000
=0 3 8.825(-550)  8.00000 3 1.013(-386)  8.00000
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Table 3: Performance of methods as a,, chosen by (17)
N  |z* =z, CocC N |z* — xp| coc

Oy h filz), zp=12 fa(x), zp=-1.3
(15) 3 7.280(-480)  8.00000 3 3.414(-445) x.00000
(14) 3 5.003(-408)  8.00000 3 1.170(-437) X8.00000
(17) =2 3 6.557(-467) 7.99999 3 1.391(-371) X.00000
(13) =1 3 2.658(-396)  8.00000 3 3.217(-406) K.00000
=0 3 1.870(-433) 8.00000 3 2.030(-546)  8.00000

Ja(x), a9=23.0 Jalx), xo=19
(15) 3 6.255(-505)  8.00000 3 1.017(-339)  8.00000
(14) 3 1.740(-443)  8.00000 | 3.787(-1936)  8.00000
(17) 3=2 3 1.017(-390)  8.00000 | 1.192(-1033)  8.00000
(13) B=1 3 6.576(-422) 8.00000 I 1.241(-1515)  8.00000
3=0 3 2.260(-467)  8.00000 3 1.407(-324) X.00000
Table 4: Performance of methods as an chosen by (18)
N |z* —xp| CocC N |&* — 5] COC

g, Tn filx), xo=1.2 falx), x9=-1.3
(15) 3 1.583(-466) X.00000 | 1.543(-476) 8.00000
(14) 3 1.441(-335) =.00000 1 2.105(-420) 8.00000
(18) 7 =2 | 1.617(-1945) 7.99999 3 7.034(-363) 8.00000
(13) =1 3 1.978(-293) =.00000 3 2.930(-393) 8.00000
g=0 3 3.409(-402) S.00000 3 2.356(-506) 8.00000

falr), x=3.0 fa(z), zTp=1.9
(15) 3 7.134(-489) 8.00000 3 1.913(-353) 8.00000
(14) 3 4.392(-461) =.00000 3 1.134(-252) 8.00000
(18) 3=2 3 6.107(-393) 8.00000 | 1.158(-1133)  8.00000
(13) 3 =il 5 5.661(-421) x.00000 | 3.632(-1597)  8.00000
3 =10 | 1.392(-461) X.00000 3 2.717(-330) 8.00000
4. Conclusions [2] Chun, C. & Neta, B. On the new family of optimal eighth

In this paper, a new family of optimal eight--order
methods for solving nonlinear equations is introduced and
studied. This family (1), (19) includes the three--point
methods given by Sharma and Arora in [4, 5] and by
Petkovic et al in [3] and our proposed method (1), (2) as
particular cases. Finally, the theoretical proofs and numerical
experiments have shown that new iterative method is of
eight-order and effective.
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Abstract—Necessary and sufficient conditions for derivative-free two- and three-point iterative meth-
ods to have the optimal convergence order are obtained. These conditions can be effectively used not
only for determining the order of convergence of iterative methods but also for designing new methods.
Furthermore, the use of the method of generating functions makes it possible to construct a wide class
of optimal derivative-free two- and three-point methods that includes many well-known methods as
particular cases. An analytical formula for the optimal choice of the parameter of iterations improving
the order of convergence is derived.

Keywords: nonlinear equations, two- and three-point iterations, necessary and sufficient conditions,
optimal methods

DOI: 10.1134/50965542519060149

1. INTRODUCTION

Presently, there are a lot of iterative methods for solving nonlinear equations and systems of equations
(see [1—6]). Among them, there are derivative-free methods, which are helpful if the derivative of the
function is difficult or impossible to calculate. The simplest of them are the well-known secant method
and Steffensen’s method, which have a low order of convergence. Nowadays, we need new optimal meth-

ods with the eighth order of convergence because their index of efficiency is 8"* ~1.682. Such methods
have applications in experimental mathematics, number theory, high energy physics, nonlinear simula-
tion, finite element methods used in CAD, 3D graphics, statistics, security, and cryptography (see [7—9]).
In the last decade, various derivative-free two- and three-point methods having good convergence prop-
erties have been developed (e.g., see [1—33]). The construction of iterative methods with a high order of
convergence became possible due to the rapid progress in computing, computer arithmetic, and symbolic
computations. In this paper, we propose some families of derivative-free methods based on the method of
generating functions proposed in [5] and on the optimal choice of parameters of iterations [6]. A novel
direct approach to proving the order of convergence of such methods that does not use symbolic compu-
tations is proposed.

The paper is organized as follows. In Section 2, we consider derivative-free two-point iterative methods
and obtain necessary and sufficient conditions for these methods to have the fourth order of convergence.
The choice of generating functions for the iteration parameter 7 is discussed. In particular, optimal finite
difference versions of the well-known Kung—Traub, King, and Maheshwari methods are obtained. In
Section 3, we consider derivative-free three-point iterative methods and obtain necessary and sufficient
conditions for these methods to have the eighth order of convergence. A wide class of optimal three-point
iterative methods that includes many known methods as its special cases is proposed. The local conver-
gence of these methods is proved without using symbolic computations. Section 4 presents the results of
numerical computations confirming the theoretical results concerning the order of convergence, and
these results are compared with the results obtained using other methods.

864
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2. DERIVATIVE-FREE TWO-POINT ITERATIVE METHODS
Consider the derivative-free two-point iterative method

S0

— _ 2.1
yk xk q)(Xk) ’ ( a)
Xyl = Vi — ¢( k) ( )
where
_ S+ () - f(X) R 2.2
S(x) = d(x) = 70 , YER (2.2)

v is a free nonzero parameter, and T, is a parameter to be determined. Here the function ¢(x) = ¢(x, )
depends not only on x but also on the parameter y; by the definition of derivative, we have

S'X)=6x7, 7v—-0. (2.3)
To determine the order of convergence of the iterative method (2.1a), (2.1b), define
w, = S (xk) . (2.4)
q)(xk)

Let f(x) e C3(I ), where I is an interval containing the root x* of the equation f(x) = 0. Then, the
Taylor expansions of the functions f(y,) and f(x, + ¥f(x;)) give

f"(xk)[f(xk)
2 (fx)
2 f,(xk)

FO) = A= w)f(x) + j wi + O(f>(x,)), (2.5)

O(x) = f'(xk)(lﬂ(

Substitute (2.6) into (2.4) to obtain

j +O0(f(x))- (2.6)

f S f(x)

- o(F? =1- 0 , 2.7
W = vy f"(xk) 00 + O(f (%)) 7 k)+ (f (x0)): (2.7)
2 f(x)
or

w, =1+ O0(f(x;)). 2.8)

Taking into account (2.8), we have in (2.5)
) = 02 (x)). (2.9)

Asin [6], we use the notation

e = f(Yk) (2]0)

()
Formulas (2.9) and (2.10) imply that 6, = O(f(x;)). Using (2.5) in (2.10), we obtain
1 S a)f () 2
0, =1- +— w ————————+ 0 . 2.11
k W a0 (f" (X)) (2.11)
SO )f ()
S1Ox)

we — (1= Y0(x))we — (1= B)7d(x,) = O(F*(x0)). (2.12)

It is seen from (2.12) that w, depends on 6, . Due to (2.8), we may seek w, in the form

w, =1—a8, + O0(f*(x,)). (2.13)

By eliminating from (2.7) and (2.11), we obtain

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol.59 No.6 2019
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By substituting (2.13) into (2.12), we obtain

0, (Y0 — a (1+70)) = O(f2(x)) & = O(xp)- (2.14)
Now (2.14) implies that

a =%+ 0(F(x)) 2.15)
1+ Yo,
By substituting (2.15) into (2.13), we obtain
w = 1-—Y% 6+ 0(f(x)). (2.16)
1+ yo,
On the other hand, the Taylor expansion of f(x,.,) gives
o = 1 -L8 %) 260 + 00, (2.17)
k
Due to (2.1a), we have
£ = £ = LTy o200y (2.18)

S a)0(x;)

SO f(x)
S Oad(x)

S ) ==1"(x%)

The elimination of the term from (12) and (19) yields

Wi + 20, —1)

Wi

+O(f*(x)). (2.19)

By substituting w, given by (2.16) into (2.19) and using the expansion

B N P (2.20)

1—x

we obtain
S )= f'(-xk)[l ~ 2 0, |+ O(f*(x0)). (2.21)
1+ ydy,
Using (2.21) in (2.17), we have
FGn) = (= (= d8T) ) + Of ), dy = 23 Y%, 2.22)
JER0%

Now we can prove the following result.

Theorem 1. Let f(x) e C3(I ), and let the initial approximation x, be sufficiently close to the simple root
x* e I of the function f(x). Then, the iterative method (2.1) has the fourth order of convergence if and only if

the parameter T, in (2.1) satisfies the condition

T =L 1 O(f2(x) = 1+ 4,0, + O(F2(x,)). (2.23)
1-4d,0,

Proof. Suppose that T, in (2.1) satisfies condition (2.23). Then
1=~ d,8,)T, = 0(/*(x0)),
and f(y,) = O(fz(xk)) due to (2.8). Therefore, due to (2.22) we have
[() = O(F (x)); (2.24)
i.e., the order of convergence of (2.1) is four under condition (2.23). Conversely, let method (2.1) have the

fourth order of convergence, i.e., let (2.24) hold. Then, (2.24) and (2.22) imply that f(y,) = O(f 2(xk))
and1-(1- c;’kek)Tk = O(fz(xk)); i.e., T, satisfies condition (2.23).

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 59 No.6 2019
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The iterative method (2.4) uses f(x,), (), and ¢(x,) at each iteration step; therefore, it is optimal in
the sense of the Kung—Traub conjecture. The second step in (2.1) can be rewritten as

J ()
+ = —T _— 225
Xp+1 = Xi k 0(x,) ( )
where
T, =1+7T0, =1+6, +d.0; + O(f (x)). (2.26)

Ifo(x,,y) = f'(x;) as Y — 0, then w, =1, and formulas (2.23) and (2.26) take the form

T, = 1426, +0(f (%),
T, =140, +20; +0(f(x,)),
respectively. Thus, the iterative method (2.1) has the form

X X,
ye=x L0 s g L), 2.27)
S'(x) S10x)
therefore, it is an optimal fourth-order two-point iterative method [6]. As in [5], the generation function
method can be applied for constructing new iterative methods (2.1). Certainly, there are various versions

of the generation functions T, = H(0,) satisfying the conditions
HO)=1, H'0)=d,. (2.28)
In this paper, we consider the simple form
_c+t (a7kc +d)x + ox’
¢ +dx + bx’

We consider some interesting special cases of H .
l.LLetc=1,d =B —2,and b = ® = 0 in (2.29). Then, we obtain

1+(B—ﬂjx
H(X)= 1+Y¢k

H(x) , c+d+b#0, cdbweR (2.29)

1+B-2)x
The iterative method (2.1) with T, = H(8,) has the form
() 1+[;3—1+W% je"
o= L =y - e, ) (2.30)

O(x) 1+B-26,  &x)

Asy — 0, (2.30) gives the well-known King method. We call (2.30) the finite difference version of the
King method.

2.Letc=b=1,d =-2,and o = 0 in (2.29). Then, we obtain

N
H(x) = +—WZ<
(1=x)
The iterative method (2.1) with T, = H(6,) has the form
_ Y(I)k ek
Ve =X — f(xk) Xer1 = Vi — 1+ Y¢k f(yk) (231)

ERN 1-6,)" ox)

As vy — 0, (2.31) gives the well-known fourth-order Kung—Traub method. For this reason, we call (2.31)
the finite difference version of the Kung—Traub method.

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol.59 No.6 2019
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3.Letc=1,m=d =-1,and b = 0in (2.29). Then, we obtain

1 2
X—Xx

1+
H(x) = 1+'Y%

1-x
The iterative method (2.1) with T, = H(6,) has the form
L_q, -6
_ f(xk)’ X1 = Vi — 1+ Yq)k f(yk) (232)
O(x;) 1-6, O(x;)

Asy — 0, (2.32) gives the Maheshwari method. For this reason, we call (2.32) the finite difference ver-
sion of the Maheshwari method.

1+

k= Xk

Note that an attempt to construct derivative-free versions of the Kung and Traub methods was made
in [30]. However, the method obtained in [30] differs from our extensions (2.30) and (2.31).

Thus, using the generating function method, we obtain a wide class of optimal derivative-free two-
point methods (2.1) with T, = H(6,) specified by (2.29). This class has five parameters (Y, ¢, d, b, ®). The
coefficients in (2.29) can depend on the iteration index k. Note that many derivative-free two-point meth-
ods were constructed in [1, 2, 7, 14—18]. The class of iterative methods (2.1) proposed in this paper, which

is specified by formula (2.29) with the parameter 7, , includes some well-known iterative methods as spe-
cial cases. Some of them are listed in Table 1. Only T, in Ren’s method [16, 34] does not belong to the
class H(0,) given by (2.29). Thus, the proposed family (2.1) with the parameter specified by (2.29) is a
considerable generalization of the methods described in [2, 7, 9, 11-18, 20—23, 26, 27].

The two-point iterative method (2.1) includes one free nonzero parameter 7. It is well known that the

convergence can be accelerated by a proper variation of the free parameter y = vy, at each iteration step.

This approach is helpful for constructing high order iterative methods with memory (see [9, 22, 23, 25]).

We now try to find the optimal free parameter from the accuracy viewpoint. Consider the Taylor expan-
sion of the function f(n,) = f(x, + Y/ (x,)) in the neighborhood of x,

_ , S (X)) 2 0 3

S = A+ () f (%) +TY ST (x) + O (X)) (2.33)

Hence, we see that at each step y can be chosen as

1
Y = —— . (2.34)
S
Then, (2.33) takes the form

00 ()

= O(f(x,)), 2.35
S > f'(xk)2+ (" (X)) (2.35)
where
EACN 2.36
N = X o) ( )

Therefore, due to (2.35) n, specified by formula (2.36) can be considered as a new approximation that is
better than x, (2.35). Taking into account (2.34) and (2.35), formulas (2.5) and (2.7) can be written as

S = A=w)f(x) + MW + O (%), (2.37)
Sy 2
=14 L6 2.38
W, =1+ o) +O0(f (X)), (2.38)
respectively. Substitute (2.38) into (2.37) and use (2.35) to obtain
S = 0L (x). (2.39)
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Table 1. Iterative methods

_ Special cases of H
Methods Tk determined in (30)
1. | Methods described in [18, 20] and 1+ dAkek cz20,d=b=0=0
h(t,s) =1+ 1)A + ) [2], Plin[21]
2. | Methods described in [10, 15, 12] and 1 c=1d= _3}(’ hb=w=0
i, s) = ; L 2], CTMin[26] 1=~ d8,
—t—3
3| e, s) = LEL 12, 34) L + @G+ 100 =08 e oy hyg d=-1Lb=w=0
I—s 1+ v — 6
4. | Methods described in [7] T+ + (A +0) - Q=98 [¢ =1+ 0, d =—2+ @),
I+ — (2 + )6y b=-Lo=0
1+(ﬁk—(2a+#j)ek+mei c=l,d=—(20ﬂ+ 1 j,
5. | Chebyshev—Halley family [9] L+ 70 L+ Y,
1 200 __2a _
1—{ 20+ 0 |b= , = H(®,)
( 1+v¢kj T+ " L+ Y% ¢
Kung—Traub’smethod and method 1 c=1d= —c?k, b= #,
6 lin f11] 1-d6, +—L _o? L+ vy
1+ vy 0o=0
7. | Potra—Ptak’s method [13, 22] 1+d,0, + dka S0, c=ld=b=0 =%
ol b 2
- _ 1
1+(Y—1)9k—Y9i c_l’d_7_2_1_3¢k’
8. | King-type method [23] ( 5 j v-2 o 5_
Y-2- 9% i _
1- b= Y
B‘D Pox —Bo, ¢
_ Yq)k 0
9. | Methods described in [17] 1+ Yo, k c=b=1,d=-2,0=0
1-20, +6;
1
10. | Methods described in [16] |- dkek + a - + Oy f (x,) Does not belong to (30)
1+0,
11. | Methods P2 described in [21] 0, c=1d= —4, b=w=0
1- L+ y0,
1+ v
S 1+ ¢ +26
12. | Methods d bed in [27 i . At = = —©=
ethods described in [27] % 0 — 00, c=1+0,d=-0s,b=0=0
13. | Methods described in [16] 1+d,6; + [0(1 + sz 0; |c=1d=b=0,0=0 +L2
(I + ) (1 + )
Let the parameter T, be chosen by the formula
T, =—L 1430, +d0 +0((x)). (2.40)
1 - dkek
Using (2.39) and (2.40) in (2.22), we obtain
[ i) = Of(x)°). (2.41)

This implies that the choice of the variable parameter (2.34) significantly accelerates the two-point
method (2.1). The order of convergence increases from two to six. In this case, method (2.1) actually is a
three-point one, i.c.,

f(xk) =x f(xk) f(yk) (242)

Nk =Xk =50 =X T X =V T G

S (%) O O

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol.59 No.6 2019
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1 1
F'x0) N3Gy
and v, are given). Then 1, = x, + v,/ (x,) and

If we replace v, = then we obtain a two-point iterative method with memory (x,

1

Ve = TN Ne = X + VS (), k=12,..,
(2.43)
Vi = Xg _M’ X+l = Vi _TkM9 & = O(xs, Yio)-
O )

Here, N;(t) = N;(t, X, X1, Yi—1>Nk—1) 1S the Newton cubic interpolation polynomial specified by the node
points x;, x,_;, Vx_;> and Mn,_; [9], [23]. It is clear that the order R of methods (2.43) is at least six.

Note that sometimes asymmetric derivative-free iterations that require additional computations were
used. For example, in [33] the optimal iterative families of the King type were proposed:

Ve = Xk _M’ O = STl M = x5 + Y (x),
O (2.44)
SfO)  1+PB6, '
Xev1 = Vi —

fendl+ @B -8,

where f[x,,m,] is the first divided difference. The second substep in (2.44) can be written as

Xkl =W~ M, (2.45)
O
where
T, = L+B8 ek (2.46)
1+ @ - dyo, - E=D0%
1+ Yo,

i.e., in this case 7, is determined by a more complicated formula than in (2.30). Moreover, as y — 0,
we have

_ 1+B6,
Y — 5>
1+(B-2)6, —(B-18;

while
T 1+ 6,
1+ @B -2)8,

in (2.30). Another example of the finite difference version of the optimal Hansen—Patrick family pro-
posed in [32] can be written as

Vi = % —%, =X AV, Bhe R\, o
Xes1t = Ve — S ) T
S+ A (M)
where
T, =L(—1+ o +1 jH(Gk), o % -1,
G 00+ 1 - 2(a + B, (2.48)

HO) =1, H'<0>=—°‘T“, |H"(0)] < co.
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Remove the asymmetry in (2.47) and consider the iterative method

G
G VT (2.49)
Xirt = Vi — MT )

o+ MM

where T, as before is determined by formula (2.48). The following result is easy to prove.

Theorem 2. Let f(x)e C 3(I ) have a simple root x* € I. If the initial approximation x, is sufficiently close
to x* € I, then the iterative method (2.49) has the optimal fourth order of convergence if

HO) =1 H'((O)=d, - O‘T” |H"(0)| < . (2.50)

Proof. Assume that H(0) = aand H'(0) = b. Then, we obtain from (2.48) that

2
T, = [1 +°‘;3ek +((oc;1) +oc+2]ei +---j(a+b9,c +0(£(x)))

o+3

=a+( a+b)ek+0(f2(xk))-

By comparing this with the sufficient convergence condition (2.23), we conclude that
a=1 O‘T”er d, - b= a?k—O‘T”

Therefore, by Theorem 1, the iterative method (2.49) has the fourth order of convergence under con-
dition (2.50).

3. DERIVATIVE-FREE THREE-POINT ITERATIVE METHODS

Consider the derivative-free three-point methods

Vi = Xk _M’ 2 = Ve — f(yk) Xp+1 = L — f(zk) (3.1
O(x;) ¢( k) ¢( k)
which are obtained from the three-point methods studied in [6] by replacing f'(x,) with ¢(x, ). Note that
the first two steps in (3.1) determine optimal two-point fourth-order methods if 7, is given by (2.23). Our
aim is to find o, such that the order of convergence of iterations (3.1) is eight. To this end, we use the Tay-
lor expansion of f(x;,,):

FOr) = £@) = £ @om L 1 07z
00x) s
/@) G2
= (1 Jf(zk) +O0(f(z)).
* o0x)
This implies that
() = O (x) (3.3)
under the condition
= 90 | ot 3.4
Ol Ve +O(f(x;)). 3.4
Now we approximate f'(z;) in (3.4) using f(x,), f(V:), f(z), and ¢(x;) such that
[z = @ f () + b f ) + e f (2) + dd(x,) + O(f (x)*). (3.5)
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Using the Taylor expansion of f(x) about the point z,, we obtain the system of equations
a; + bk + Cr = O,
akwk + kak + dk = 1,

awl + by +2d, (wk + %yf(xk)) =0, (3.6)

a,w) + by, +3d, (w,f Wy (x) + %72 f2(xk)) =0,
where
Wi =X =% Ve = Vie = % (3.7)
System (3.6) has the unique solution
¢ =—a, — by,

di =1=aqw, = by,

wi (W + ¥ (%))

b, = , 3.8)
ViV = W) (Ve = wie = V(X))
g = N B =YD+ Y ) + e+ Y )
Wi (Ve = Wi) (W + Y ()W = Vi + Y (%))
Substitute (3.8) into (3.5) to obtain
£z = 001+ aw, (% - lj Fh (% - 1}) FOU (), (3.9)
/3 %
where
O = 0(x) = fIxe &l & = X + Y ()
According to (3.2) and (3.7), we have
S(x) S(x) S(x)
w, = —*%1,, = (1, - ) ——*, —w, ==y — X, (3.10)
k o o Yk k o Yk k o k — Xk
Ve VT _q g =N T (3.11)
We =Y Xk — Wk Xk — Yk
W+ 1 =%(rk 0 W +vf(xk)=%(l+v¢k>. (3.12)
k k
Using (3.10)—(3.12) in (3.8), we conclude that
_ LT+ v (1 — ) 2T YO+ (T + YO )’
by, = Lryo, aw, = (1-1) AT (3.13)
Substitute (3.9) into (3.4) and neglect the small term O(f 4(xk)) to find that
o, = 1 (3.14)

1+ a,w, (% - 1] + beYi (f—[zq/;’ Vel IJ,

k k

where a,w, and b,y, are determined by formula (3.13). The expressions in parentheses in (3.14) can be
rewritten in terms of the second divided differences as

—f[Zk7xk] -1= L](‘[Z/(,.ka,&k](Zk - &k) = _f(—-);k)f[zkaxka&k](rk + 'Y(bk)a (315)
2 O O
—f[qu);)"k] —-1= ——ffl;;k)(f[yk,zk,xk] + [z %681 (T + ¥0) (3.16)
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By substituting (3.13), (3.15), and (3.16) into (3.14), we obtain another representation of o, :

1
S (x)

QA +79)

here £, = (T (T + YOS V> 2o X1 + (L= T 2T + YO) + (T, + Y¢k)2)f[zerk7ék])-

Now, we are going to find an asymptotic formula for o, defined by (3.14). To this end, we use the for-
mulas

o = ; (3.17)

e Xd G+ V00 (3.18)
O 1+ 7,0,
f[Zk,}’k]_l :1—?—%’ v Zf(Zk)/f(yk)a (3.19)
0% T
T, =1+7,0,. (3.20)

Similarly, (3.13) can be rewritten in terms 7T, as (3.18) and (3.19). Taking this into account and using
(3.18) and (3.19), we can rewrite (3.14) as

_ 1
O = . A+ A+ Ay, : (3.21)
I+ y0) A + v + T0,)(1 + T,0,)7T,
where
A = (1 +6,T) (0 + 7 +T,0,)°(1 - T), (3.22a)
Ay = 2+ Y0, + 2T, + (1 + ¥ + T,0,)))T6;, (3.22b)
A =—(1+6,7)%( 70,)°
3 (1+06,7T)"(+ v + Tkekz) - (3.22¢)
+ 2+ 70, + 27,0, + 1+ v +T,0,))T6;.
Due to (2.23), we may write T, as
T, =1+d,6, +P,0; + 7,6, +---, (3.23)

where 3, and ¥, are constants. Then, by Theorem 1 we have

fO) =0 (x))  f@) =00 (%)), vi = O0(f(x0)). (3.24)
Using (3.23) and (3.24) in (3.22), we obtain

A = =01+ ¥0) (@, + a0, + a0} +--), (3.25)
A =001+ v9) (B + by + -+, (3.26)
Ay = ~(1+¥9) (¢ + 20, + ), (3.27)

where

a=di ay =P+l a3=7+26&k+(3¢?,§+ 2 jd
1+ yo,

A (3.28)
_ d; ) 3 _ A5
b1—1+ s bz_dk_dk+3dk’ C]—l, Cz—zdk.
1+ o,
Similarly, we have
1 _ 5 2R 1 2 3
— =1-2d,0, +|2d, —B———— 10, + O(f (x;)). (3.29)
7.0, =0 y= 1+ v,
1+ 1+70,)7,
L+ v
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Then

At At Ay, __=@_z@m+(mﬁ_s_ ! jeﬂ
I+ v0) A + v + T0,) (1 + T,0,)7T, 1+ yo,

X (~a0) + (b — a)0; + (b, — a3)8; — (¢, + ¢,0,)v;)

— a0, + (b —a, + 2a,d,)0% + (b2 — = 2d,(b - ay)

—q@%—&—‘ D@—@+@—m&@m+mﬁm»
1+ vd,

Substitute this expression into (3.21) and use the known expansion (2.20) to obtain

1 3
- (b, —a))0
1+’Y¢kj 2o

+ (¢ + (¢, = 2¢,d)0, v, + ai0; —2a,(b, — a, + 2a,d,)0, + 2a,c,0,v, + @0, + O(f*(x,))

o, =1+ab, — (b —a, +2ad,)0; +(2d, (b — a,) + q, (23,3 -B-

=1+ a0 +(af — (b —a,) — 2a,d, )0} + ((af +2d,(b - b)) + (2&,3 B +1 3 D
YO

— (by — a3) = 2a,(b, — @, + 2a,d}))8; + (¢, + (¢; — 2¢,d )8V, + O(F ()

or
o, =1+d,0, + (B + jei + [7 +dp-d, - LJ 0, +(1+2d,8,)v, +O(f*(x)). (3.30)
1+ oy (1+ vd)
Asy — 0, formula (3.30) reduces to the form
o, =1+20, + B+10; +(§+2B—4)0; +(1+40,)v, +O0(f*(x))), (3.31)

which describes the asymptotic behavior of ¢, in three-point iterative methods (see [6]).

Theorem 3. Let all assumptions of Theorem 1 be fulfilled. Then, the three-point iterative methods (3.1) have
the eighth order of convergence if and only if the iteration parameters T, and o, are specified by formulas (3.23)
and (3.30), respectively.

Proof. Let T, and o, be defined by formulas (3.23) and (3.30), respectively. Then, by Theorem 1 the

first two steps in (3.1) determine an optimal fourth-order method, i.e., f(z;) = 0(f4(xk)). The value o,
specified by formula (3.30) satisfies condition (3.4). Therefore, we have (3.3). Conversely, assume that the

order of convergence of (3.1) is eight. Then (3.1) and (3.3) imply that f(z,) = O(f 4 (x,)) and formula (3.4)
is valid. Therefore, by Theorem 1 formula (3.23) is valid for certain constants ¥ and B Using approxima-

tion (3.9) in (3.4), we obtain (3.14) accurate to 0(f4(xk)). Due to (3.23), we obtain from (3.14) the asymp-
totic formula (3.30).

Assume that in (3.1)

o 2
T = HO) = Gt DO+ 08, L0 cdboe R (3.32)

¢ +do, + bo;

o, = HO)+——0 +d,|B-—2—1|0] + (1 +2d,8,)v,. (3.33)
1+ o, 1+ gy

Then, we obtain a family of optimal derivative-free three-point iterative methods because T, and o, deter-
mined by (2.23) and (3.33) satisfy conditions (3.23) and (3.30) with the constants

a_w-b _d(d, ; - (b+w)d  d*—bc;
Bz—_—(—+dk), Y=—( 2) + 5—dy,
c c c c
respectively. Therefore, the generation function method described in [5] makes it possible to construct the
family of optimal three-point iterations.
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Table 2. Nonlinear functions

Functions Root
I fix) = XD G 4 xlog(xsinx + 1), [9] X*=0
2 (%) = log(x> = 2x +2) + e(xz_5x+4) sin(x — 1), x* =1
+) if x<0 X+ =0
3. Fix) = {x(" TR Xt =1
2x(x—-1) if x2=0, =1
4. i) =[x -4 191 X+ = 42

Now consider the three-point iterative method

M, % = WalXp, Vi M)
STxomd (3.34)

_ J(z) ‘
Sz vil + @ = Yo Sz Vi il + (@ = yi) @ = X)) S 12k Yier Xis i

Me = X Y (%) Vi = X —

X1 = 2

Here the function y, is taken from any optimal derivative-free fourth-order method and f1z,, y;, x;,N,]
is the third divided difference. Theorem 2 implies the following result.

Theorem 4. Let all assumptions of Theorem 1 be fulfilled. Then, the order of convergence of the iterative
method (3.34) is eight.

Proof. Since v, is a fourth-order iteration, z, can be rewritten as

L =V~ T %7 o(x) = flxe, el

By Theorem 1, we have T, =1+ a?kek +O0(f 2(xk)). This implies the Taylor expansion (3.23) for T,.
By comparing (3.1) with (3.34), we obtain

= % (3.35)
k .
Sz vl + @ = YOSz Vi il + (@ = yi) (@ = %) S 12k Yier Xi i

It is easy to verify that the parameter o, defined by formula (3.35) satisfies condition (3.30). Then, The-
orem 3 implies that the order of convergence of (3.34) is eight 8.

Remark 1. The order of convergence of the three-point iterative methods proposed in [12, 22—24]
immediately follows from Theorem 4, which is an extension of the theorems in [12, 22—24].

Note that all existing optimal derivative-free methods can be unambiguously written in form (3.1).

It is easy to verify that the parameters T, and o, in these methods have the same asymptotics (3.23) and

(3.30) with specific constants ¥ and B Thus, the convergence of all existing optimal derivative-free meth-
ods can be proved using the sufficient convergence conditions (3.23) and (3.30) without symbolic com-
putations. Furthermore, the application of these sufficient convergence conditions makes it possible to
construct new optimal iterative methods [29]. It is seen from Table 1 that the parameter 7T, in all optimal
three-point methods listed in it is obtained using the generating functions H(8,) determined by (3.32);
the only exception is the method proposed in [16]. It is seen from (3.32) and (3.34) that the function y,
can contain free parameters. This implies that the iterative methods (3.34) form a wide class of optimal
derivative-free three-point methods. This class includes many well-known methods as special cases (see
[4—6, 9, 12]). As in the preceding section, we can vary 7y at each iteration step using the information
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Table 3. Two-point iterative methods

Methods Ty k e — x| CcoC
Numerical results for the smooth function f{(x) with x; =1

Q2.1) c=lLd=-d,b=—--L1— ©=0 4 0.4180e—33 3.99

1+ Y0,
; 5 1

King-type [23] c=Ld=—d,b= , =0 5 0.5272¢—96 4.00
SRREETH

Potra—Ptak’s [13, 22] c=ldeb=0m=% 5 0.9744¢—80 3.99

e ’ 2
P1[21] c=Lb=d=w=0 5 0.1887e—65 4.00
P2 [21] c=lLd=—1_ p=w=0 5 0.1022¢—95 4.00
1+ y¢;

Zheng’s [12] c=lLd=-d,b=w=0 4 0.1655¢—35 4.00

(2.31) c=b=1,d=-2,0=0 5 0.1416e—95 4.00

(2.32) c=Ld=0=-1,b=0 5 0.3838e—82 3.99

Steffensen’s Xy = x, — L) 9 0.8745¢—58 2.00

()
Numerical results for the smooth function f,(x) with x, = 0.5

Q.1) c=lLd=-d,b=—-L1— ©=0 4 0.1673e—104 4.00
1+ v0y

King-type [23] c=ld=-d,b=—1— ©=0 5 0.8607e—112 4.00
(e

Potra—Ptak’s [13, 22] c=ldeb=0o=% 5 0.4066¢—70 4.00

e > 2
P1[21] c=Lb=d=w=0 5 0.1325e—62 4.00
P2[21] c=Ld=-—1_ p=p=0 5 0.5680e—88 4.00
1+ ygy

Zheng’s [12] c=lLd=-d,b=0=0 4 0.4934e—58 3.99

(2.31) c=b=1,d=-2,0=0 5 0.6144e—109 4.00

(2.32) c=Ld=0=-1,b=0 5 0.6129e—73 4.00

Steffensen’s Xy = x, — L0 8 0.4282e—30 2.00

()

obtained at the preceding and the current steps. This enables us to increase the order of convergence with-
out using additional computations. More precisely, we can obtain three-point iterative methods with

memory (x, and v, are given). Then, n, = x, + ¥,/ (x,) and

Xp+1 = Lk
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Table 4. Three-point iterative methods

T = H(®)
Methods k |x* - xk| COoC
choice of parameters

Numerical results for the smooth function f(x) with x, =1

(3.34) c=Ld=B-2b=0=0,0=2) 3 0.1710e—38 8.38
(3.34) c=b=1d=-20=0 3 0.3900e—57 7.94
(3.34) c=Ld=w=-1,b=0 3 0.4900e—44 7.99
Lotfi’s [22] c=ld=b=00= d_2k 3 0.4362e—43 7.9
King-type [23] | c=w=1Ld=B-1-d.b=—2"P @=2 3 0.1024¢—54 7.98
1+ Yo,
Zheng’s [12] c=lLd=-d,b=w0=0 3 0.5610e—62 7.97
Sharma’s [14] c=ld=—-—1 " p=0=0 3 0.9068¢—48 8.00
1+ o,

Numerical results for the smooth function f;(x) with x, = 0.5

(3.34) c=1,d=B-2b=0=0,3=2) 3 0.3321e—33 7.96
(3.34) c=b=1,d=-2,0=0 3 0.1543e—44 8.07
(3.34) c=l,d=0w=-1,b=0 3 0.4989¢—36 7.98
Lotfi’s [22] c=1d=b=0 0= 9 3 0.2769e—35 7.99
e b 2
King-type [23] c=o=Ld=B-1-d, b= 2-B ,B=2 3 0.5302e—44 8.00
1+ ygy
Zheng’s []2] Cc = 1’ d = —c?k, b=m0=0 3 0.62816_64 7.97
Sharma’s [14] c=1d=- 1 ,b=0=0 3 0.7441e—40 8.02
L+ v,

Here N,(t) = N4(t, X, Zp—i> Vi—1sNie—1» X¢—) the fourth degree interpolation Newton polynomial specified

by the node points x,, z,_;, Yi_1> Nk_1> Xx_1- As in [9], it is easy to prove that the order R of convergence of
method (3.36) is at least 12.

4. NUMERICAL RESULTS

In this section, we describe the results of numerical computations for comparing the effectiveness of
different methods. The computations were performed in Maple. To ensure high accuracy and avoid losing
significant digits, the computations were performed with 300 significant digits. The computations were
performed for smooth and nonsmooth functions (see Table 2) with y = —0.01. To check the convergence
of Newtons, the computational order of convergence (COC) was calculated by the formula

_ Inlpee — x¥/by — x*)

- In(x — x*/x_y — x*¥)’
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Table 5. Numerical results for the nonsmooth function f;(x). Three-point iterative methods

Methods T, = H(©,) k |x’k - xkl CocC
xXo=0.1Lx*=0
(3.34) c=Ld=Bp-2b=0=0,0=2) 4 0.7235e—30 2.00
(3.34) c=b=1d=-20=0 4 0.7186e—30 2.00
(3.34) c=Ld=w=-1,b=0 4 0.7222e—30 2.00
Lotfi’s [22] c=ld=b=0 =% 4 0.7221e—30 2.00
9 b 2
King-type [23] c=o=Ld=Bp-1-d, b= 2-B ,B=2 4 0.7185e—30 2.00
1+ v,
Zheng’s [12] c=ld=-d,b=w=0 4 0.7167e—30 2.00
Sharma’s [14] c=1,d=- 1 ,b=0w=0 4 0.7205e—30 2.00
1+ v,
Xg =5x*=1
(3.34) c=Ld=Bp-2b=0=0,0=2) 4 0.2191e—236 7.99
(3.34) c=b=1d=-20=0 3 0.8113e—39 7.77
(3.34) c=Ld=w=-1,b=0 3 0.8754e—32 7.60
Lotfi’s [22] c=ld=b=00= d_zk 3 0.2144¢—31 7.60
King-type [23] | c=w=1Ld=B-1-d,b=-—2"P @=2 3 0.2249¢—37 7.76
1+ v,
Zheng’s [12] c=ld=-d,b=m=0 3 0.5377e—47 7.86
Sharma’s [14] c=lLd=-——L_ b=w=0 3 0.4975¢—34 7.67
1+ yo,
xy = —10, x* = -1
(3.34) c=Ld=Bp-2b=0=0,0=2) 4 0.4791e—102 7.99
(3.34) c=b=1d=-20=0 4 0.2067e—141 7.99
(3.34) c=Ld=w=-1,b=0 4 0.9351e—112 7.99
Lotfi’s [22] c=ld=b=00= d_zk 4 0.5302e—110 7.99
King-type [23] c=o=Ld=p-1-d, b= 2—_[3, B=2) 4 0.2101e—135 7.99
1+ v,
Zheng’s [12] c=Ld=-d,b=w0=0 4 0.8976e—178 7.99
Sharma’s [14] c=lLd=-——L_ b=w=0 4 0.2099¢—121 7.99

T

where x,, x,_;, and x,_, are three successive approximations. The iterative process is stopped when
-30
Ix, —x* <107".

Table 2 presents the example taken from [9]. The third example with the nonsmooth function (see [7,
14, 32]) is often used for checking the validity of derivative-free iterative methods. Tables 3—6 show the
number of iteration steps (k), the absolute errors |x, — x*, and COC for the methods with y = —0.01. The

numerical results confirm the theoretical conclusion about the order of convergence. It is seen from Table
6 that the high order methods work well not only for sufficiently smooth functions but also for nonsmooth

ones. Note that the derivative of the nonlinear function f;(x) has a discontinuity at the point x* = 0; for
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Table 6. Three-point iterative methods

T = H(®)
Methods k e — x| cocC
choice of parameters
Numerical results for the nonsmooth function f;(x) with x, = 3
(3.34) c=Ld=f-2b=0=0,3=2) 2 0.1365e—35 7.70
(3.34) c=b=1,d=-2,0=0 2 0.3071e—40 7.79
(3.34) c=lLd=0=-1,b=0 2 0.8144e—37 7.72
Lotfi’s [22] c=1ld=b=0.0= e 2 0.1228e—36 7.72
e b 2
King-type [23] | c=w=1d=B—1-d,b=-—2"P @=2 2 0.3717e—40 7.80
1+ voy
Zheng’s [12] c=lLd=-d,b=0=0 2 0.1675e—44 7.84
Sharma’s [14] c=1d=- 1 ,b=0=0 2 0.2114e—38 7.75
1+ ¢
Steffensen’s Xeuy = %, — L) 6 0.5556e—45 2.00
O(xz )

this reason, the COC = 2 in this case for all the methods discussed in this paper (see the first part of Table 5
and [7]). The proposed methods (3.34) can be successfully used in the computations that require high
accuracy.

5. CONCLUSIONS

The necessary and sufficient convergence conditions for two- and three-point iterative methods
obtained in [6] are extended for the case of derivative-free methods. The latter methods can be effectively
used not only for determining the order of convergence but also for constructing new methods. Based on
the generating function method, wide classes of optimal methods that include many known methods as
special cases are proposed.
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1. Introduction

For a given nonlinear system F(x) : D C R" — R", the problemisto find a vector (xZ‘l) , xz‘z), ces xz“n))T
such that F(x) = 0. Such problem is important and interesting and often appears in numerical anal-
ysis and engineering. The most widely used method for solving this problem is the quadratically
convergent Newton’s method given by

X1 = Xk —F’(xk)_lF(xk), k=0,1,..., (1)

where xq is the initial approximation and F'(x)~! is the inverse of Fréchet derivative F'(x) of the
function F(x). In recent years, a number of methods with higher order of convergence for systems
of nonlinear equations have been developed in the literature, for example, see [1,3-9,11,12,16-18]
and references therein. The aim of this paper is to extend higher order methods presented in [23]
to systems of nonlinear equations. This paper is organized as follows. In Section 2, we study the
convergence of the proposed two-step iterative methods. Section 3 is devoted to the convergence of
three-step methods with parameter a=1and a # 1. In Section 4, we consider the total cost compar-
ison between methods. Finally, numerical results supporting theoretical ones and some comparison
of methods are given in Section 5.

2. Two-step iterative methods

We consider the two-step iterative method

vk = Xk — F () 7 F (), (2a)

CONTACT Kh. Otgondorj @ otgondorj@gmail.com

© 2019 Informa UK Limited, trading as Taylor & Francis Group
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X1 = Yk — F (o) T F(yp), (2b)

where Ty is some # x n matrix to be determined properly. Using the Taylor expansion of F(xj1)
around yj, we have

Fear) = (I = F @ (0™ ) i) + OGP, 3)
where I is identity matrix. From (3), it clear that F(xyy;) = O(||F(xx) 1) if we choose 7, such that
I-FouF ()™ =0 or T=F(y 'F (. (4)
Substituting (4) into (2b), we obtain

X1 = vk — F' i) T F(yp). (5)

Our task is to approximate F'(y) ~! with accuracy O(|| F(x) 1?). To this end, we use the expansion of
F'(yx) at point xj

F'(y) = F'(xi) — F' () F (e) "' Flox) + O(H?)
= F'(x) (I = Px) + O(h?), (6)
where
P = F (x) " F" () F (o) " F (), (7)
and h = ||F(x) |, O(IFkl) = O(h). We can assume that

Pl = 1, (8)

for xj sufficiently close to x*. By virtue of Banach lemma of inverse, from (6) we get

F™ =T -P) 'F)™ + 0 = [+ PF (x) "' + Oh?), )
because
=Py~ =Y Py =1+ P+ 00, (10)
j=0

Using the approximate formula obtained from (9)

Fyo™ '~ I+ PF ()", (11)
in (5) gives
Xks1 = yk — L+ POF (x) ' F(yp). (12)
Using (11) in (4) we have
T = [+ P+ O(h?) = I + 20 + O(H?). (13)
Here
Py 1

O == = 5F’<xk)*1F”<xk)F’<xkr1F(xk). (14)
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Since

F(xk)

2
(F0™'Few)” + 0,

F'(x) " F” ()
2

Fyr) =

F'(x) "'F(y) =
Substituting (14) into (16), we obtain
F'(x) "' F(yi) = OkF (xp) "' F(xi) + O(h?).

On the other hand, using (2a) and (17), one can rewrite (12) as

Py 7 -1
Xep1 =x — | I+ (I+Pk)? F ()™ F(xp),

or

X1 = xk — TF (o) T F(xp),

where
_ Py _ 2 3
Tk—1+(I+Pk)7 =1+ 0, +20; + O(h).
From (13) and (19), one can find the connection of 7 and 7 as:
T = (e — DO =1 +20 + O(h?).

Thus Theorem 2.1 in [23] is extended to system of nonlinear equations.

2
(F 0™ F@o)” + o).

(15)

(16)

17)

(18)

(19)

(20)

Theorem 2.1: Let F(x) : D C R" — R” be a sufficiently Fréchet differentiable function in a convex set
D C R" containing a zero x* of F(x). Suppose that F'(x) is continuous and nonsingular in x*. Then,
for an initial approximation sufficiently close to x*, the sequence {xi}k>0, X0 € D obtained by (18) has

order four if and only if the parameter matrix ty. is given by (19).

Proof: The Taylor expansion of function F(xy) at point y, and use of (20) and (17) gives

F(xk41) = FO) + F ) (tk — Dk — xx) + O(((tx — Dk — x))%).

Since tx — I = O(h) and yy — xx = O(h), using (6) and (17) into (21) we have

Fxks1) = Fyp) — F () (I = Pp) (i — DO ' F' (xi) "' F(yi) + O(h*)

= ') (1= (= 200 (m = DOF ) F (x0) ™ Flye) + O(h).

By choice (19) we have F(xxy;) = O(h*). The converse follows from (22).

1)

(22)

From Theorem 2.1 immediately follows that the two-step iterative method (2) has a order four if
and only if the parameter matrix Ty is given by (20). The main practical difficulty related to parameter
matrix O is the evaluation of the second-order Fréchet derivative. For a nonlinear system of n equa-
tions and 7 unknowns, the first Fréchet derivative is a matrix with n? values, while the second Fréchet
derivative for continuous functions has %(n3 + n?) values. This implies a huge amount of operations
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in order to evaluate every iteration. To overcome these difficulties we will find approximate formula
for ®. In general, we assume that yj is defined by

vk = xx — aF' (x) " F(xp), a#0. (23)

In order to compute © with some accuracy we will use the first order divided difference of F(x) [11]

1 1 1
[x+h,x;F] = f F(x + thydt = F'(x) + EF”(x)h + gF’”(x)h2 + 0o, (24)
0

where hi = (b, h,.7 ., h), h € R". Using definitions (24) and (23) we have
F' ()" w3 Fl = T — a®y
- %F’(xkrlF”%xk)(F’(xkrlF(xk))z + O(H?). (25)
Analogously, using Taylor expansion of F'(y) at point xi, we obtain
F'(xp)"'F'(y) =1 — 2a0y
- ”;F%xk)*lF’”(xk) (F a0~ B + 002 26)
The inverse of F' (x;) ' F'(yy) exists and by virtue of (26) we have
F'(yo) " F (xx) = I + 2a® + O(h?). (27)

Then from (26) and (27) it follows that

F' (50~ F () + F () ' F () = 21 + O0#), (28)
From (25) we find
1
o= - (1 — F'(x0) ™ [y x5 F]
2
+ S F (0T ) (F (0 T F ) ) + O, 29

It follows from (26) and (29) that
1
O = —F@) ™ (Dot Fl = F O30 + O(). (30)

Elimination of term with factor a? from (25) and (26) gives

1

Ok = —F(x)™ (ZF’(xk) +F ) — 3[}’k:xk§F]) +00r). @1

As a consequence of (31) and (30) we get

1
O = F() ™ (F(x) = s Fl) + O(K), (32)
and
O = - (1 F ™' F ) + 002 (33)
2a

Thus, we have four approximate formulas for ©j that will be used for determining the parameter
matrix Ty in (20). In some cases it may be useful to have less accurate formula for ®. Using (28)
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in (33) we get

1
O = - (~ 1+ F o0 F ) + 0. (34)

In a similar way, (28) can be used in (30), (31) to obtain less accurate formulas. The divided difference
[,x; F] of Fis an n x n matrix with elements (see [11])

Fi(yys -+ > Yy X(+1)5 - - > X(m) — Fi(yys - - > Y(—1)> Xy - - + > X(m))
YG) — XG)

(35)

X Flij =
where 1 <i,j < n.

Remark 2.1: Note that the fourth-order convergence of iteration (2) holds true if ® in (20) is
replaced by one of the approximate formulae (30)-(34) with a=1.

Analogously, we can prove that

Theorem 2.2: Assume that all the assumptions of Theorem 2.1 are fulfilled. Then the two-step iteration
(18) has a third order of convergence if and only if the iteration matrix Ty is chosen such that

T =1+ O + 0(O)). (36)
In what follows we will use two step iterative method (2a)-(2b) as

vk = Xk — F () 7 F (), (37a)
Xpg1 = xk — TeF () T E (), (37b)

which can be considered as a continuous analogy of Newton’s method (CANM for short) or damped
Newton’s method [24]. Following the idea of generating functions method in [22] we can state the
following.

Theorem 2.3: Suppose that all assumptions of Theorem 2.1 are fulfilled. Then the two-step iteration
(37) has a fourth order of convergence if and only if the iteration matrix Ty is chosen such that

o= (- ot@k)_l(l +(1— )0k + 2 — )@ + w@i), @€ R, (38)

Proof: It is easy to show that 7; given by (38) can be rewritten as:

= I+ a0 +’0; + 0 + -+ ) (I + (1 — )Ok + (2 — @) O} + 0O})
=1+ O + 207 + O(I).

Thus by Theorem 2.1 the convergence order of iteration (37) is equal to four. |

From the approximate formulas (30)-(33), we see that the Theorem 2.3 is valid when ©® is defined
by one of the formulas (30)-(33) with a=1. When « = 0 the formula (38) leads to (19). Now we



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS . 1709

consider another two-point iterative method
Yk = xk — aF' (o) (), w1 = Xk — wF () T (),
It is easy to show that

2 a=1,
1 a#l

We consider the Taylor expansion of F(xj;) at point xx. We have

Fiyx) = O(h°), o= :

/!

F(xg41) = Flxp) — F () tF () ' Fx) +

F/// 3
- () R+ 00,

As the preceding case, we seek for tx in the form
T = [+ Ok + xOF + dy + O(H?).

Substituting (42) into (41) and taking into account the following relations

(e 0 Faw)) = (1 + 0 (Fo ™ Fexw))
+ F (xi) ™' F(o) Ok F (x) ™ ) + OChY),
(5F 0" Fe)” = (Fa " Fep)” + 0,
we get

F(xy1) = —F (x0) (Ok + ckO®F + di) F' (xi) " F ()
F’(xx)
2
+ F'(x) "' F(x) Ok F (i) ™ F ()
B F///(xk)
6

+ (1 + O (F ()™ F(x))?
3
(F o™ F@o) + 0.

Multiplying by F’(x;) ~! both sides of (44) and taking (14) into account we have

F -1
O ()04 ()~ Flx)

F () " F(xgy1) = ((1 — )0 +

1
- (dk + gF’(xkrlF’”(xk)(F’(xk)—1F<xk>>2))
x F (x) " F(xp) + O(hY).

From (45) we see that
F(xgq1) = O(hY),

if we choose ¢ and dj, such that

1
=1+ EF/(xkr1F”(xk>®kF’<xk>*1F(xk>®,:2 + O(h)

) (0 )~ F )’

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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and
1 2
di = == F (x) " F" () (F ) B )+ OCH?).

From (26) we find dj given by (48) as

1
i = = (F )™ F () = (1 = 2401 + O(H).

Substituting (47) and (49) into (42), we get

1
T =1+ O+ OF + EF/(xk)*lF//(xk)@)kF/(xk)”F(xk)

_ Fo)”'F ) — (I —2a0y)
3a?

+ o).
If we propose the following assumption
1
S/ i) T () OkF ()~ Fx) = O + O(RY),

then (50) is written as

T = [ + Ok + 207 + di + O(h*).

(48)

(49)

(50)

(51)

(52)

Note that the assumption (51) fulfilled for scalar equation case and i given by (52) coincides with
that of scalar equation case [22]. Furthermore, the assumption (51) holds true for some method (37).
As an example, we consider the generalized Jarratt’s method given in [8], as (39) with a = % and

1 _
o = ~(3F () — F ()~ (3F o) + F'(x1)).
2

The method M43 [12] is a special case of M4, which is when a =1 and (32) is used for ®j. Using (27)
it is easy to show that 7 satisfies (52). It means that the assumption (51) fulfilled in this case. We

summarize the above result in the following theorem:

Theorem 2.4: Let the assumption (51) be fulfilled. Then the two-step method (39) has a fourth-order

convergence if Ty is given by (52).

Analogously, using (45) one can prove the following:

Theorem 2.5: The two-step iteration (39) has a pth order (p = 2, 3) of convergence if Ty is given by

7. =1+ O + O(h?),
and
7. = I+ O(h),

respectively.
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3. Three-step iterative methods

Now we consider three-step iterative method.

yie = xx — F () T F (), (53a)
2z = yk — TF () "' F(yp), (53b)
X1 = 2k — o (x) 7' F(zp). (53¢)

The order of convergence of iteration (53) is given by the following theorem:

Theorem 3.1: Suppose that all the assumptions of Theorem 2.1 are fulfilled. Then the iteration (53) has
a order p if and only if the iteration matrices Ty and ay are given by formulas in Table 1.

Proof: Let 7i be defined by formula (19). Then according to Theorem 2.1 we have F(z;) = O(h%).
Then using expansion of F(xj) around zj we have

Flxien) = (1= F (@)oxF (60 ) F@) + OF @), (54)
From (54) it follows that
Fxis1) = O(F(z)?), (55)
under condition
ax = F'(z1) " 'F (xp). (56)

Using Taylor expansion of F'(zx) around xi, we have
F(z) = F ) (1= F o)™ F ) wef (0~ Fow) ) + 00), (57)
From (57), it follows that
Fa™ = (1= Fa ™ F(anF (50~ Fa) | Fw ™" + 002,
Using equality type (10) we have
Fla)™ = (14 F @™ P/ @0 ()™ Feo )F (w0 ™" + 00), (8)

If we take into account (19) and ® = O(F(xy)), then substituting (58) into (56) we find ax with
accuracy O(h?) as

o = I+ 20, + O(H). (59)
As a result, from (54) we get
6

F(xg1) = O(F(xx)°). (60)
Table 1. Choices of parameters.
p ™ ak Tk
5 I+ 6y 420} + 6} + 0(0) I+ 0(0y) I+ 20 + pO}

I+ 6, + 00} I+ 26y + 0(0)) I+ 0(©)

6 I+ O + 20} + 0(0}) 14204 + 0(©) [420y + 0(©2)

7 4 Oy +20% +0(83) I+ 20y + 607 + 3dy 14204+ 0(©})
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Conversely, let (60) hold. From (56) and (58), it can be easily seen that
ax = F (1) 7'F (o) = I+ F () "' F' () i (xi) ™ E o) + O(h?).
Substituting it into (54) we get
E(xir1) = O(H)F(z1) + O(F(2)°).
From this we conclude that
F(zk) = O(hY),
because of (60). Hence, by Theorem 2.1, we obtain (19). Substituting (57) into (54) we have
Flxisn) = (1= F o) (1 = F 0™ F' (0w (60 ™ FOx) ) (k0™ )z
+ O(h%). (61)
Then from (60) and (61) it follows that
1= F ) = F() ™ F' () i (xi) ™ Fa))axF () ™! = O(h?),
or
(I = F ()™ F' (o) F' () ™ Fxi) ) = 1+ O(h?),
in which we have used (19). From this we obtain
ar = (I =207 T + O(h) = 14 20, + O(h?).

The proof for p =6 is complete.
Let the parameter matrix 7 be defined by (36) and «y is given by (59). Then by Theorem 2.2 we
have F(zx) = O(F(xx)%). Using (36) in (57) we get

F'(z) = F () (I = 20y) + O(h?).
Hence
I—F(zarF () =1 —F () — 20T+ 20)F (xp) L 4+ O(h?) = O(W?),  (62)
because of ©; = O(F(x;)). Using (62) in (53c) we get
F(xp11) = O(F(xp)*), (63)

i.e p=5when i and oy are defined by (36) and (59), respectively. Conversely, let (63) hold. From (54),
it is clear that

F(zk) = O(F(x)*), (64)
and
I — F(z)oakF ()~ = O(h?). (65)
Hence, by Theorem 2.2, we get 7p = 1 4 O + O(K?). Then from (57), we obtain
F'(zk) = F () (I — 20) + O(h?). (66)

Substituting (66) into (65) we obtain
I—F(x) (1 - z@k)akF’(xk)—‘ — O(h?).

From the last expression (59) immediately follows, i.e. we have proved that p =5 when i and «y, are
defined by (36) and (59), respectively. In a similar way, one can show that p =5 for 7 and «y defined
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by the formulas in the first row of Table 1. It remains to prove for p = 7. To do this we use the first
divided differences

[k x5 F] = F' () — %F"(Xk)F/(Xk)_IF(xk)

+ F ) (F )™ Foxp)” + 008, (67)
(ot E] = F' () — 5 o0 () ™ FGa)

B (8F (0 P + O, (69)

Not that in deriving (68) we used the relations (14), (15) and (20). According to (19) and Theorem 2.1,
we have F(zr) = O(F(x1)%). Using (19), (20) and (43)we obtain

F'(x) ™ [y 21 F] = I — O — D + O(), (69)
F' () exis F] =1 — O — %ck — D+ O(H%), (70)
where
Ci = F () ™ F" (x) Ok F () ™" F(xp), (71)
Dy =~ < F () B () (F (o)~ ) (72)

From (69) and (70) we find
Cr = 2F (x) " ([y xk3 F] — [z 215 F]) + O(R?), (73)
and
Dy =1~ O — F ()~ [y xi: F] + O(F). (74)

Expanding F'(zj) around xj and using (19) we have
F'(z) = F (x) (I — 2Ok + Cx + 3Dy) + O(I)). (75)

Since C; = O(F(xx)?) and Dy = O(F(xy)?) then there exists the inverse of matrix in brackets and by
Banach lemma we have

(I — @Ok + C +3Dp) + O(F)) ™' = 14204 + Cy + 3Dy + 40} + O(K?).
Hence, from (75) we have
Fl(z) ™! = (I+ 20k + Ci + 3Dk + 405 + O())F (x) ™" (76)
The Taylor expansion of F(xy41) around zj gives
E(xi1) = (I = F (2)exF (0~ F(zr) + O(F(z)?). (77)
From (77) it is clear that

F(xg41) = O(F(xp)), (78)
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provided that
I—F(@)arF ()" = O(h), (79a)
F'(x) — F'(z)ax = O(). (79b)

From (79b) we get
ax = F'(z0) "' F () + O(). (80)

Substituting (76) into (80) we obtain
ak = I+ 20 + Cx + 3D; + 407 + O(1). (81)

Using (73) and (74) in (81) we have
@ =1+ 20 + (46} + 30 = ©) — F'(x0)™" [y 545 F] + 2[ 20,355 F]) ) + OC#?).

If we use assumption (51) then, by formula (71) we get C, = 2(*)% and @)i = F ()~ (g x1s F] —
[z, xk; F]) + O(h?). Finally, we get

@ =1+ 204+ 6F ()~ ([yio 165 F] = [z, 46 F] ) + OGF). (82)
Conversely, let (78) hold. Then from (77) it follows that F(zx) = O(F () (Indeed, if F(z) = O(h?)
then F(xx41) = O(F(xx)®) for any choice of k. This contradicts (78) ). By Theorem 2.1 we get (19).
As a consequence, the above obtained relations (76), (77) and (82) are valid too. This completes the

proof of Theorem 3.1. u

Moreover, based on the generating functions method one can propose pth-order (p = 5,6) iterative
methods (53) with parameter matrices tx given by (38) and oy given by formula

ar=1I—pOY'UI+2—-p)O)), PeR (83)

Remark 3.1: Quite recently Sharma et al. [15] proposed the fifth-order three-step iterative method

vk = Xk — F () T F (), (84a)
zk = yk — 5F () T E(yp), (84b)

9 1
Xkl = Yk — gF/(xk)‘lF(yk) - EF/(xk)_lF(Zk)- (84c)

If we compare (84) with (53), then 7j = 5I. Hence by virtue of (20) we have 7, =1+ 50, =1+
O(F(xx)). Then according to Theorem 2.1 in [23] we have F(z;) = O(F(xx)?). On the other hand,
using relation (17) one can write the third-step in (84) as

1 / -1 3
K1 = 2k — 5(1 — 160k)F (xi) "' F(zx) + O(F(xx)),

which does not have such a form as in (53). Hence our theory (Theorem 3.1) does not work in this
case.

In Table 2 we cite some existing pth-order methods. It is easy to show that the matrices 7 and oy for
the methods in Table 2 meet pth-order sufficient conditions in Theorem 2.1 and Theorem 3.1. The
proposed pth-order methods with different choices of parameter matrix ® include some existing



Table 2. Some existing pth order methods.

N Methods

Order

Tk Qg
1 Cordero et al. [4] 20— F () " TF(y)
2 Sharma [12] 31— 2F ()™ Iyko Xki F
3 Grau-Sanchezet al. [7] Qlyk X F1 = F' () ~DF (%)
4 2y, X1 F17TF (i) — 1
3 9
4 Madhu et al. [9] w=1- Z(sk D+ g(sk -2
sk = F ()™ F (yi)
1 9 3
Sharmaet al. [16] %= 5 (—I+ ZF’(yk)’1F’(Xk) + XF’(xk)’1F’(yk))
5 Grau-Sanchez et al. [6] ]
Xiaoet al. [21] %=+ F (i) ~"F (x0)) F (i) ™"F ()
6 Corderoet al. [3] 5 20— F ()~ F (i)™ F' (i)~ F ()
7 Xiao et al. [21] Vi = Xk — aF' (x) "' F (%)
1 1 - 1 1 -
G=((1-=)1+=F)'F —I4+2( =F 1——|F F
Tk (( 2a> + % (Xk) (}’k)) + (2:1 ) + ( Za) (Xk)> (%)
1
Sharmaet al. [14] a=z, (F (v~ HF () — DO, 2F (y) " F (k) — |
8 Sharmaet al. [12] 31— 2F (i)~ lyk, Xk: F1 31— 2F (i)~ [y X F]
9 Xiaoet al. [21] Vi = Xk — aF' (x) "' F (x)
w= 1 (14 200 ) P+ 2P o0 i) 1= )i PP
2 4 4 a a
@lyk X F1 = F () ™' F () QlykXi F1 = F' (x0) ™' F (%)
10 Grau-Sanchezet al. [7] 6 ko Xk FI71 = F (i) ~F (%) 2lyk Xk FI7VF () — 1
1
" Cordero et al. [5] a=3 (F () — 2F (530) " BF (50O — 4F(x1)) (F' () — 2F (yi) ™ F(xe)
2 3 1 )
12 Madru et al. [9] a=3 % = H; /*E(Sk*’)JrE(Sk*/)

SLLL @ SOILYWIHLYW 43LNdINOD 40 TYNHNOI TVNOILYNYILNI
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methods as special cases. For example, if we choose ® by formula (32) with a=1 then we obtain
fifth-order methods given in [4,14,21]. The choice (31) with a=1 gives the fourth and sixth-order
methods obtained by Sharma et al. [12]. The fifth-order method presented by Grau-Sanchez et al. in
[6] is obtained for the choice given by (31) with a=1.
Now we consider the following method:
i = x = aF (x0) ~ F(xp),
2k = ¢p(xk,)’k): (85)
X1 = 2k — o () T F(zp).

Note that zx = ¢ (xx, yx) is the iteration function of order p > 2.
Theorem 3.2: Let F: D € R" — R" be a sufficiently Fréchet differentiable function in a neighbour-
hood D C R" containing a zero x* of F(x). Suppose that F'(x) is continuous and nonsingular in x*.

Then, for an initial approximation sufficiently close to x*, the sequence {xi}, xo € D obtained by (85)
has order of convergence p+2 if and only if the parameter matrix oy is given by

o =1+ 20, + O(H). (86)

Proof: Since F(z;) = O(hP), then from (85) we get

F(xqr) = (I — F (@)arF ()~ F(z) + O(hP). (87)
If we choose ay such that
I - F(@)orF ()" = O(h?), (88)
or
ok = F'(z0) 7' F () + O(h), (89)

then from (87) we get
F(xgp1) = O(H'*?), p>2.
On other hand, the second step in (85) can be rewritten as
2k = bp (X yi) = Xk — TkF (i) " F(xp).
Then, we have an expansion
F'(z) = F () (I = F (i) ™ F' () T (i) ™ F(xi)) + O(h?). (90)

For small O(F(xy)) = O(h) the matrix I — F (xx) " F” (xx) T F (xx) "' F(xy) is invertible and hence
from (90) we have

F(z0) ™ = (I— F () ™' F' () tF () " F ) ™ F () ™!
+ O(h%). (91)
Using (10) in (91) we have
Fl(z)™" = (I+ F () "' F ) wF (o)~ F(x))F () ™" + O(K?).

By Theorems 2.4 and 2.5, we can replace 7 by I in the last expansion without loss of accuracy. Hence
by virtue of (14), the (89) has a form

ag = [+ F () ' F' () F () T E () + O(h?) = I + 20 + O(h?).

The converse is obvious from (87) and (89). [ |
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There are many possibilities to obtain «y satisfying (86). We consider some choices for o. First
we use approximate formula (33). Substituting (33) into (86) we have

1 1
o = (1 + ;> I— ;F’(xk)_lF’(yk). (92)
For instance, if a = %, then (92) leads to [13]

1
= 5 (51 = 3F ()~ F ow))-

Fora = 5, —1 and 1 we obtain

;
o = 31 — 2F (x) "' F (),
ax = F'(x) "' F (),

and
ap =21 = F ()" 'F (7)) = F () "' F (),

respectively. The last case is sixth-order method presented in [3]. Another possible case is to use less

accurate formula (34). Using (34) in (86) we get [21]

o = (l — l) 1+ lF’(yk)_lF’(xk). (93)
a a

The simplest generating functions method [22] for (86) is

ar = (I —20 7L (94)
Using (33) and (34) in (94) we get
1 / 1 / - /
o = <<1 - ;) F(x) + ;F ()’k)) F(xk), (95)
and
1 / 1 / - /
ok = <<1 + ;) F(ye) — ;F (xk)) F(yk). (96)

Thus, we propose four-type choices (92), (93), (95) and (96) for ax. Whena = % the formula (95) leads

to that of in [2], while when a = % the formula (95) leads to that of in [5]. Thus, the Theorem 3.2 is
more general than the particular Theorems presented in [2,3,5,13,21].

Remark 3.2: The choices (92), (93), (95) and (96) for oy and 7 also valid for three-step method (53)
with sixth-order of convergence.

4. Total cost comparison between methods

We check Tables 3-5 to see the total cost of each iteration for each method, where # is the system
dimension, « = n(n — 1)(2n — 1)/6, B = n(n — 1), uo and w; are relative costs of evaluation of F
and Jacobian, respectively, in terms of multiplications and £ is the relative cost of division in terms of
multiplications. The total cost ranges from n* /3 to n*, not including lower powers of the dimension 7
of the system. Here we denote our fourth-order method (2) with ® given by (33) by M4, fifth-order



Table 3. The cost of each iteration for fourth-order methods.

Evaluation of Scalar Vector Matrix Vector
Method F and Jacobian Multiply Multiply Linear Solve Total
3 343¢ 3+3¢
Jarratt [8] npeo + 20 4n 0 3a+38+ (7/3 + 3n) £ n+ (2;“ + +T> n?+ (/40 +T n
9+¢ 7+15¢
Jarratt-like [13] npeo + 20 4n 2n? a+38+ (g + 3n> ¢ n/3+ (ZW + %) n? + (Mo + +6 )n
7+¢ 14+ 15¢
Cordero et al. [4] 2npo + 2n? 3n n? a+38+ (g + 3n) L n/34+ 21 + %) n® + (Mo + +6 ) n
7+¢ 14+ 15¢
M43 [12] 2npg + % 3n n? a+38+ (g + 3n> ¢ n/3+ (/u + %) n® + <2Mo + +6 )n
7+¢ 1+415¢
M4 2npg + 2n% 3n n? a+38+ <§ +3n>(3 /3 + (2;“ + %) n? + <2M0+ %)n
Table 4. The cost of each iteration for fifth-order methods.
Evaluation of Scalar Vector Matrix Vector
Method F and Jacobian Multiply Multiply Linear Solve Total
149¢
Sharmaet al. [14] 2npg + 2n% 4n 0 2a + 48 + (B +4n)t 203 /3 + Qui 4+ 3+ On + (zuo + +3 ) n
3 3+43¢ 14 3¢
Corderoet al. [3] 2nuo + 202 3n 0 30438+ (7’3 + 3n> ¢ n+ (2,“ + %) n? + (mo + +T> n
§ ) 3 5 14+9¢
Xiaoet al. [19] 2npo + 2n° 4n 0 200 + 4B + (B +4n)t 2n° /34 2ua +3+0n" + | 2o + 3 n
13+¢ 1427¢
M5 3nuo + N 5n 2n? o« +5p + (g + 5n> ¢ n/3 + (m + TJ“) n? + <3M0 + +6 ) n

WIIAVINVHZ 'L (3 8LLL



Table 5. The cost of each iteration for sixth-order methods.

Evaluation of Scalar Vector Matrix Vector
Method F and Jacobian Multiply Multiply Linear Solve Total
7 27¢
Jarratt-like [13] 2nj10 + 2n% 6n 3n? a+58+ (g + Sn) 13 n/3+ (zm + 7> (2 + ) n
Sharma and Arora [12] 3npug 4+ np 5n 2n? a+58+ (g + Sn) 4 n/3+ (//.1 —+ 7) + (3 )n
5 3 2 1 + 6Z
M61 [12] 3nuo + N 3n 0 2a + 3B+ (B +3n)¢ 2334 (w1 42+ 0On® + (3p0+ —— )n
, S 2 1 + 12¢
M62 [12] 3no + N 5n 0 200+ 58+ (B +5n)¢ 2 /34 (ur + 4+ 0n* + ( 3po +
1 27[
M63 [12] 3npug 4+ N 5n 2n? a+58+ (g + Sn) L n/3+ (,41 + —) ( + )
33@
M6 3nuo + N 6n 3n? a+6p8+ (g + 6n) 4 n/3+ (;“ + ) (3 100 + + )

6LLL @ SOILYWIHLYW 43LNdINOD 40 TYNHNOI TVNOILYNYILNI
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method (53) with © at (32) by M5, and sixth-order method (53) with ® defined by (32) by M6. We
chose a=1 for M4-M6. The most expensive method is Cordero et al. [3] closely followed by Jarratt
[8] for which the total cost is #3. Four methods Sharma et al. [14], Xiao et al. [19,20], M61 [12] and
M62 [12] cost 23 /3. All other methods cost 1 /3. We note that our methods M4, M5 and M6 all
cost n3/3. Hence they are competitive under both of computational cost and order of convergence
to existing methods. The efficiency index of methods is given by E = p!/“, where p is the order of
convergence and C is computational cost per iteration. For large system C tends to infinity as n — oo.
Hence E — 1 for all methods i.e. E is not distinguished each other, as the scalar equation case. To
compare the efficiency of different methods at first needed to be estimated computational cost per
iteration (see more details [12,19-21]). It mainly consists of evaluations of functions and derivatives
(divided difference) and of estimation of products and quotients for matrix inversion, multiplications
of a matrix by a matrix and a vector. Therefore, to estimate the computational cost we first keep in
mind the number of above mentioned operations per iteration. Obviously, it is necessary to compare
methods by CPU time. In Tables 3-5 we present the number of evaluations per iteration for different
fourth-, fifth- and sixth-order methods.

5. Numerical results

In this section, we compare the performance of proposed methods (2) and (53) by several experi-
ments. The numerical experiments have been carried out using Maple 18 computer algebra system
with a multi-precision arithmetic 2500 digits. The computer specifications are Microsoft Windows 8.1
Intel(R), Core(TM) i3-4150M CPU, 3.50 GHz with 4046 MB of RAM. We use the following stopping
criterion for the methods and test problems

[l — xk—1ll2 < 10710,

In order to verify the theoretical order of convergence, we calculate the approximated computational
order of convergence p by
_ In(lxerr — xll/ Nl — x—11D)
In(llxk = 111/ ll66—1 — xx—21)

(see [3,20]) with the last four approximations in the iterative process. In addition, we include CPU
time utilized in the execution of program which is computed by the Maple command “time()”. To
testify the order of convergence of the new proposed methods M4, M5, M6, we consider the following
Example 5.1. The error ||xx — xx— || of approximations to the corresponding solution of Example 5.1,
the number of iterations k and the computational orders of convergence are displayed in Table 6,
where (30), (32)-(34) are choices of ® as mentioned in Section 2 and the factor 4 in the brackets
denotes 10"

Example 5.1: We consider the system of trigonometric equations (see [12]):
n
Xj — COS in—ij =0, 1<i<n.
=1

For n = 4, initial value is xy = (0.75, .. .,0.75)T and solution of this problem is, x* = (0.514933264,
...,0.514933264)7.

Example 5.2: We consider a large-scale nonlinear problem with n=51,101 (selected from [20]):

X +x2) —2=0,
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Table 6. Computational order of convergence (COC) for Example 5.1.

Methods Ok k lIxXk — Xg—1 1l coc
(30) 5 4.01(—569) 4.00
(32) 5 1.77(—476) 4.00
M4 (33) 5 6.79(—543) 4.00
(34) 5 1.18(—643) 4,00
(30) 5 8.17(—347) 5.00
(32) 5 7.12(—295) 5.00
M5 (33) 5 6.39(—322) 5.00
(34) 5 4.31(—352) 5.00
(30) 4 2.02(—715) 6.00
(32) 4 7.92(—554) 6.00
M6 (33) 4 3.05(—652) 6.00
(34) 4 0 6.00

x@Xi+1) —1=0, 2<i<n-—1,

Xy +xq1) —2=0.
A solution x* = (1,1,...,1)T, initial value xy = (0.85,0.85,...,0.85)7.

Example 5.3: Consider the planar 1D Bratu problem [9,10]:

d*u

— 4+ =0, A>0,0<x<1 (97)
dx?
with the boundary conditions #(0) = u(1) = 0. The Bratu problem arises from the study of the radia-
tive heat transfer, the fuel ignition model of thermal combustion, thermal reaction, chemical reactor
theory [10].

Table 7. CPU time (in seconds) for Example 5.2 and methods.

CPU time
Methods O Order n=>51 n=101
(30) 15.8 1183
M4 (32) 16.8 122.6
(33) 8.89 58.0
(34) 4 3.93 25.0
M43[12] - 15.9 122.7
Jarratt [8] - 9.18 65.8
Jarratt-like [13] - 19.9 166
Cordero [3] - 10.7 703
(30) 19.6 160.7
(32) 19.5 161.2
M5 (33) 14.9 108
(34) 5 7.01 46.7
Jarratt [13] - 10.8 76.6
Cordero et al. [3] - 12.0 60.0
Xiaoet al. [19] - 15.9 98.0
(30) 254 196.5
(32) 26.5 221.1
M6 (33) 14.9 100
(34) 6 6.70 417
M63[12] - 25.5 197.2
Cordero CM-16 [13] - 10.8 144
Jarratt-like [13] - 321 240

Cordero [3] - 12.0 172
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Table 8. CPU time (in seconds) for a large-scale nonlinear problem (Example 5.3).

Methods Ok Order Error CPU time
(30) 0.4954e—202 57.0
M4 (32) 0.5148e—202 583
(33) 0.9041e—231 63.1
(34) 4 0.4143e—238 21.7
M43 [12] - 0.4143e—238 59.6
Jarratt [8] - 0.2405e—714 80.3
Jarratt-like [13] - 0.5031e—260 96.3
Cordero [3] - 0.9041e—231 763
(30) 0.9309e—410 744
(32) 0.9965e—410 76.3
M5 (33) 0.5954e—451 90.3
(34) 5 0.2397e—458 49.2
Jarratt [13] - 0.6058e—414 76.6
Cordero et al. [3] - 0.2159e—396 60.0
Xiaoet al. [19] - 0.2093e—344 62.2
(30) 0.2086e—662 1111
(32) 0.2021e—414 111.9
M6 (33) 0 121.8
(34) 6 0.1047e—750 44.6
M63[12] - 0.1254e—611 98.2
Cordero CM-16 [13] - 0 102.1
Jarratt-like [13] - 0.1241e—611 118.8
Cordero [3] - 0.3113e—129 91.2

Using a standard finite-difference scheme, the discrete version of Bratu problem will be

Uiyl — 22U + Ui

2 +xei=0 i=1,...,.N—1,

with discrete boundary conditions uy = uy = 0and the stepsize h = 1/N. There are N—1 unknowns
(n =N —1). It is known that the finite difference scheme converges to the lower solution of the
1D Bratu using the starting vector uy = (0,0, ..., 0)T. We use N=121 and A = 3.513830719 (see
[9]). Table 8 shows the results about discrete version of 1D Bratu problem solved by the considered
methods. In the Table 8, we show the absolute error || xx — xx_1 || and CPU time.

From Table 6 we can observe that computed results completely support the theory of convergence
discussed in previous sections. In Tables 7 and 8 we have made comparison of methods M4, M5,
M6 and existing methods listed in Tables 3-5 based on the CPU time. We have also compared the
performance of related methods by the CPU time for large scale nonlinear problem with n= 51,101
in Table 7 and n =120 in Table 8. The comparison for large system (see Tables 7 and 8) clearly shows
that our methods with the choice given by (34) are the fastest as compared to the other methods with
the same order of convergence.

6. Conclusions

We have developed several families of order four, five and six for the solution of systems of nonlin-
ear equations which include some well-known methods as particular cases. Therefore the proposed
family of iterations can be considered as extension of some existing iteration methods. The nec-
essary and sufficient conditions for pth order of convergence (3 < p < 6) are given in terms of
parameter matrices 7x and ak. We suggested several choices of parameter matrix ®j determining
7¢. Sufficient convergence conditions in Theorems 2.3, 2.4 and 3.2 can be used effectively to derive
new two and three-step iterations with higher order of convergence. We have compared the per-
formance of our methods to existing methods and found that the methods with the choice given
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by (34) cost the least and are the fastest as compared to the other methods with the same order of
convergence.
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COMPARISON OF SOME OPTIMAL DERIVATIVE-FREE
THREE-POINT ITERATIONS
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Abstract. We show that the well-known Khattri et al. [5] methods and Zheng
et al. [14] methods are identical. In passing we propose suitable calculation
formula for Khattri et al. methods. We also show that the families of eighth-order
derivative-free methods obtained in [13] include some existing methods, among
them the above mentioned ones as particular cases. We also give the sufficient
convergence condition of these families. Numerical examples and comparison
with some existing methods were made. In addition, the dynamical behavior of
methods of these families is analyzed.
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1. INTRODUCTION

At present there exist many optimal derivative-free three-point iterations
see, for example, [1-3, 5-9, 13, 14] and references therein. They mainly distin-
guished among themselves by approximations of f’(z,) at the last step. Let
the values of f(x) be known at points x;,, wy,, y, and z,. Often the follow-
ing three approaches are used for approximation f’(z,). The most preferred
approximation (see [1],[6, 7, 9],[14]) is

(1) f'(zn) = N3(2n),

where N3(z) is Newton’s interpolation polynomial of degree three at the point
T, Wn, Yn and z,. The second approach is [5]

(2) f'(zn) = vif(zn) + vaf (wn) + v3f (yn) + vaf (zn).

The real constants vq, v5, v3 and vy are determined such that the relation (2)
holds with equality for the four functions f(z) = 1, x, 22, 2. While in [13]
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was used the approximation

f'(zn) = af (xn) +0f (Yn) + cf (zn) + dp(2n),
(3) G(wn) = L=l — fla, ).

Wn—Tn

The real constants a,b,c and d in (3) are determined such that the equality
(3) holds with accuracy O(f(z,,)*). Note that in last years have been appeared
papers, in which were used another approximations such as Pade approximant
[3] and rational approximations [2] and so on. As we seen from (1), (2) and (3)
more suitable and guaranteed approximation is (3). In general, all these three
approaches turn out to be identical. This is well-known long ago fact [16].
This idea motivated us to make detail comparison of methods based on (1),
(2) and (3). Note that the detail comparison of optimal three-point methods
was made in [4] and such comparison for optimal derivative-free methods is
still needed. The paper organized as follows. In Section 2 we consider some
methods based on the approximations (1), (2), (3) and made comparison of
them. We obtain the sufficient convergence condition for these families in Sec-
tion 3. Numerical and visual comparison some optimal derivative-free methods
are made in Section 4.

2. SOME METHODS BASED ON THE APPROXIMATION (1), (2) AND (3)

The well-known Zheng et al. [14] methods (Z8) based on (1) and has a form

Yn = Tn — f[J;SIZJC:U)n]’ wp = xn +7f(Tn), v €R\{0}

_ f(yn
(4) 20 = Yn = e g lym on =~ Flmn]

f(2n)
f[znayn]“‘(zn_yn)f[z7myn71'n]+(zn_yn)F’

Tp41 = 2n —

where F' = (2, — x) f[2n, Yn, Tn, wy]. Based on (2) the well-known Khattri et
al. [5] methods (KS8) has the following form:

_ _ f(xn)
Yn = Tp Flznwn]’
_ f(yn)
(5) =Y T iy @) (@nyn)f(wn) (22 2yt 7] @) () |
(Tn—yn)Y (Wn—yn)vf(xn) (@n—yn)(Wn—yn)
f(zn)

Tl = Zn = T ¥ Hy+Hs—Hy -
Here
(6) Hy = Q=
s = G o )
H, = ’y(:pnf2zn+yn)({JiwfirBz(i:E;jfflLQ_g/ZZ?n+3ZTQL*2ynzn Fzn).
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In [5], the authors pointed out that these methods given by (5), (6) is similar to
the already known methods proposed in [1, 6, 7, 9], in particular to method in
[14], however, they are not the same methods. From (4) and (5) we see that the
second and third substeps in (5) are much complicated as compared with (4).
The formula, requiring many mathematical operations absolutely unfitted for
numerical and stability points of view. Hence, the formula (5) needed further
simplifications. The families of derivative-free optimal methods proposed in
[13] are based on (3) and have a form

_ f(xn)
Yn = Tn — flan,wn]’
(7) o = Yo~ To g
Tpnil = Zn — Qp f[‘igi?u)n]’
where
_ In O 4wh?
(8) o= SHlncrllteli 4 g4b20, cdbweR
and
(9) an = 1 9
<1+anwn(%—l)+bmn(%—l))
with
_ 27—n+’7¢n+(7—n+7¢n)2
AnWp = (1 - Tn) (Tn+Y0n)1+7dn)
(10) bnyn = T(ﬁiﬂw On = fln, wnl,
Tn = 1+7_'n9n7 977,: ;Egz%

We call the representation (7) of three-point methods as canonical form. Each
derivative-free three-point methods, in particular the methods (4) and (5) can
be written in canonical form uniquely. Note that all the considered methods
(4), (5) and (7) are optimal in the sense of Kung and Traub [17]. So they
has an efficiency index 8'/* ~ 1.68179. The methods (4) and (5) contain one
free parameter 7, whereas the methods (7) contain, in addition ~, yet four
parameter ¢, d, b and w. Hence, in our opinion, the families (7) represent a
wide class of optimal three-point methods. Our aim is to compare the above
mentioned methods in detail. First, we will show that the optimal derivative-
free methods (4) and (5) are identical. Namely, we obtain

THEOREM 1. The optimal derivative-free methods (4) and (5) are equiva-
lent.

Proof. Using easily verifying relations

(11) fl2n,ynl = én(1 = 0n), flyn, wn] = ¢n(l — ﬁ%)?
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the second-step in (4) and (5) can be easily rewritten as

(12) Zn = UYn — T, f(yn)

Tn Flen wn]

where

| j 247¢n
(13) ™= e = e

Thus, the first two sub-steps of (4) and (5) are the same. In passing, we obtain
very simple calculation formula (12) for iteration method (5). It remains to
compare the third sub-steps in (4) and (5). The third sub-steps in (4) and (5)
can be rewritten as

f(zn)

Tn+l = 2n — Op Tlznwn]’

where

(14) oy =

Dn
f[zn7yn}+(Z7L_y7L)f[Zn7yn7wn]+(Z7L_yn)F
for iteration (4) and

(15) O = HiFHy+ B Ha'
for iteration (5). Using the following relations
f[znayn} = %(1 - Un)» Up = ‘J;Eyn)’ f[Zn,ZEn] = %(1 - envn)a
2 Tn (1— 971, 1—vp
(16) f[Zn,Z/n,fL‘n] = Tn}z)&n) Ta 7*?" (v )7
?E 07’!, 77747 n n
Tlens s ons ] = sy (i, — Pastes),
one can write (14) as
1
(17) oy = ,
Tn(Tn+ ¢n) 2Tn+YPn
TD et T (1= ) 758y — Qfnn

where Q = T”i?’;;?&lﬁ’_’ﬁ;")_l) In a similar way, using (16), the expression

(15) can be easily rewritten as (17). Thus, the third-step of (4) and (5) also
coincide with each other.
Therefore, the iterations (4) and (5) are identical. O

So the methods (5) can be considered as rediscovered variant of Zheng et
al. [14] ones. Now, we use the relations (16) in (9). After some algebraic
manipulations we again arrive at (17). It means that the third sub-step of
iterations (4) and (7) are the same.

Therefore, the iterations (4), (5) and (7) can be written in more convenient
and unified form as:

_ f(zn)
A
(18) Zn = Yn — Tn f[J;(:ZU)n]a

e f(zn)
n+l n Flznsyn]+(zn—yn) flzn,yn, Tn]+(2n—yn) F
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where 7, is given by (8) for (7) and is given by (13) for (4) and (5). When
¢c=1,d=—d, and w = b = 0 in (8), 7, coincides with (12). In this case
the iterations (4) and (5) and (18) are identical. So our iterations (7) contain
the methods (4) and (5) as particular cases. In addition, the iterations (18)
contain some well-known iterations as particular cases (see Table 1).
Later on, we denote the method (18) withc =1, d = —dy,, b= —ﬁ
w = 0 by M1. These parameters are chosen to have a large region of conver-
gence and a big basin of attraction for family (18). Moreover, the iteration

and

¢ d b w Tn methods
1 —dp, 0 0 ﬁ (Z8), (KS8)

1 dn 140, +ad, % X
L 0 agn T# Lotfi (L8) [6]

_1-4d 2-p 1+(B—1)0,+80; P

1 B=1-dn 55 5 1+(ﬁ—2—71+i¢k0)9k+41§;;k 7 King’s type (K8) [7]

T - .
I =5 0 0 FTT Sharma (S8)[9)]

1 2a 1 H(0n)

L =20 — 155 5y H(b) 260, (1) Chebyshev-Halley (CHS8)[1]

7 dy 1
booh . Loz B

i 1
Kung-Traub (KT8)[17]
1 _dn 1714)" 0 m Soleymani (SS8> [10]
1 0, o 1 i
1 -1 0 o | U+ o T o) e Soleymani (SV8) [11]
i i
1 —dy -2 0 — L M1
6 — T

Table 1. Choices of parameters for methods.

(18) can be rewritten as

Yn = Tn — f[];(rizj)n]a wy, = an +7f(zn), v €R\{0}
(19) Zn = 1/}4(«Tn7yn7zn)a

L f(z)
n+1 n Flzn ynl+(zn—yn) flzn,yn Znl+(2n—yn) F

where 14 is any optimal fourth order derivative-free method. From (19) we
see that the each iteration of the family of derivative-free optimal three-point
iterations (19) essentially depends on the choice 14 or the choice of iteration
parameter 7, in (18).

3. CONVERGENCE ANALYSIS

Generally, the convergence properties of family of iterations (18) essentially
depend on the convergence of iterations consisting of the first two sub-steps
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in (18) i.e.,
Yn = Tn Flzn,wn]’
(20) Zn =Yn — Tn f[J:c(iZu)n]’

where 7, is given by (8). It is easy to show that if the iterations (20) converge
then its convergence order is four. Moreover, if the iterations (20) converge,
so does (18) with convergence order eight. From this clear that in order to
establish the convergence of (18) it suffice to establish the convergence of
iterations (20). To this end we use Taylor expansion of function f € C?(I)
and another form of second-step in (20) as

. f(an)
(21) z o

Tn = 1+ 7,0,

n = Tn n

As a result, we have

/ Tn Wh / Tn 2

(22) f(zn) = (1 - / (;n )Tn 7!}0 (qb%) Tﬁ)f(.i[?n)
where

_ S f ()
(23) U= T
From (22) it follows
(24) |f(zn)| < qlf(zn)l,
where
(25) G= =+ 2], =,

From (24) we see that the convergence of iterations (20) is expected only when
(26) g<1.

Thus, it suffice to find conditions for which (26) holds true. It is easy to prove
that

LEMMA 1. Let the w,, € (—=2,1). Then the inequality (26) holds true under
conditions:

(27a) 0<n, <2 when 0<w, <1,
(27Db) 0<n, <1 when -2 <w, <0.

THEOREM 2. Let 147y, > 0 and wy, € (—2,1). Then the two-point iterative
methods (20) converge under condition

(28) |On] <1+ 76n.
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Proof. Using the following relations

f/(xn) Yon 2
L))
on LT Ty n T OUR)

and
Tn=1+40,+d0%+...,
in (25) we obtain

_ 1 2
(29) =1+ +’7¢n0n +O(f7).

If we use (29) then the condition (27) can be written in term of ,, as (28) within
the accuracy O(f?(x,)). In other words, (26) holds true under condition
(28). O

From (8) we obtain

On(dnc+ (w—0)0,)  Opp(6n)
c+db, +b02  cH4db, +bo2’

(30) Foo 1=

where
0(0,) = dnc + (w — b),.
Let |w —b| < dype. Then (6,,) > 0 on 6, € [—1,1]. Then from (30) we deduce
that the following relations
T — 1, 6, =0,

are equivalent and the convergence of sequences f(z,) and 6,, to zero as n —
oo expected simultaneously with equal order four. On the other hand, the
iteration (20) can be considered as damped Newton’s method

_ f(zn)
UYn = Tn, f,($n>77na

with damping parameter 7, given by (28). As is known that, the damped
Newton’s method converges [15] if

(31) 0<n, <2

In term of #,, the condition (31) gives the same result (29).

4. NUMERICAL EXPERIMENTS AND DYNAMICAL BEHAVIOR

In this section, we will give a numerical comparison of our method M1 with
other well known optimal eighth order methods listed in Table 1. For this
purpose, we consider several test functions given in Table 2. In particular,
f2 = 0 is Kepler’s equation which relates the eccentric anomaly E, the mean
anomaly M and the eccentricity € in an elliptic orbit.

Additionally, we will make comparison of method M1 and other methods
based on the dynamical behaviour.
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Test functions Roots

1. f1 =exp(—2? + 2+ 2) +sin(rz) exp(z? + wcos(x) — 1) + 1, [6] z* ~ 1.55
2. fo=M-—-FE+esin(E),0<e<1,][]] x* ~0.38

Table 2. Nonlinear functions.

Further, we will use the abbreviated names for methods (see last column of
Table 1). In Tables 3 to 5, we consider method (CH8) using the weight function
H(0,) = 1+(1—2a)0,, with values of the parameter a = 0, £1 (see [1]), method
(L8) for (a = 0,+1) and method (K8) for (8 = 0,=£1). In addition to compare
family (18) with other methods we also consider some optimal methods, which
third substeps are different from method (18). Namely, we used the following
substeps:

Derivative-free Soleymani et al. [11] three-step method (SV8) has the fol-
lowing substep:

— f(zn) 1 f(yn)\2 f(zn)
xn+1 =%n f[znayn] (1 o f[xnawn]_l (f(mn)) + (2 o f[Zn7 yn])f(wn))

Derivative-free Kung-Traub’s [17] three-step method (KT8) has the following
substep:

o fn) f(wn) (un =0+ f (@n)/ flEn,2n])
Intl = Zn Flym) ) (Fwn)—F(zn)

Derivative-free Thukral’s [12] three-step method (T8) has the following sub-
step:

=50 (1 )

% (1 t f(iigg;%in) ) B (f[Zn7yn}—f[{v(:z;)n]+f[2mﬂfn] )

Derivative-free Soleymani et al. [10] three-step method (SS8) has the following
substep:

. fGa)f(wn)
Int1 = Zn = (Flwn)—f(yn)) fl@n,yn]

(1 46 (L4 @ flow ) f23)
(1 ") (L4 0= Slow unl) (F25)%)

All computations are carried out using Maplel8 computer algebra system
with 1000 digits. We use the following stopping criterion for the methods:
|z, — 2*| < & where e = 107°0 and x* is the exact solution of the considered
equation. In all examples, we consider that the parameter v = —0.01.

To check the theoretical order of convergence of methods, we calculated the
computational order of convergence p (see [19-21]) using formula
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(| — 2*|/|en1 — z*])

(o F——

where x,,, x,,_1, xn_2 are last three consecutive approximations in the iteration
process. In Tables 3 and 4, we use test functions fi, f2, f3 and exhibit the
iteration numbers n, the absolute value |z,, — *| and the computational order
of convergence p. When the iteration diverges for the considered initial guess
xo, we denote it by '—’. From Tables 3 and 4 we see that the convergence order
of all the methods in Table 1 confirmed by numerical experiments. From the
result of Tables 3 and 4, we can observe that the region of convergence of
methods M1 and Z8 are wider than that of other considered methods.

Methods n | Ty — x| p n |, —ax¥ p
¥ =155 x9=0.8 r*=155 z9g=1
M1 3 0.5590e-58 794 3 0.3688e-69 7.98
78 — — 3 0.8486e-64 7.93
LS (a=0) - — 3 02124e57 7.8
(a=-1) - — 3 0.4607e55 7.86
(a=1) - ~ 3 0.4097e-60 7.91
K8 (8=0) — — 3 0.2369e-64 7.93
(B=-1) - — 3 0.7934e-65 7.9
(8 =1) - — 3 0.468Te64 7.94
S8 — — 3 0.2124e-57 7.88
CHS8 (a=0) — — 3 0.2734e-60 7.90
(a=—1) - — 3 0.1654e54 7.85
(a=1) - — 3 0.1648¢70 7.97
[4] - — 3 0.2639e-60 7.90
SS8 — — 4 0.8295e-191 7.99
T8 — — 4 0.1898e-204 7.99
SV8 — — 4 0.2008e-174 7.99
KT8 — — 4 0.4856e-324 8.00

Table 3. Comparison of various iterative methods for fi(x)

Generally, higher order convergence methods consist of multi-steps which
may use more evaluations of functions than the original one. In this case,
multi-point methods may have the extraneous fixed points (black points). In
order to find the extraneous fixed points, we rewrite any three—point method
as [4]:

Tn+l = Tn — J,%Hf(xn)a

where Hy = 1+ 0,(7, + apvy). Clearly, the root 2* of f(z) is a fixed point of
the method. The points £ # 2* for which H;(§) = 0 are also fixed points of
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Methods n |z, — x| p
¥=038 z9=1

M1 3 0.3388e-266 8.00
78 3 0.4157e-250 8.00
L8 (a=0) 3 0.1081e-232 8.00
(a=-1) 3 0.6929e-256 8.00
(a=1) 3 0.2358e-222 8.00
K8 (B=0) 3 0.2496e-219 8.00
(B=-1) 3 0.1278¢-252 7.99
(B=1) 3 04075¢-217 7.99
S8 3 0.1081e-232 8.00
CHS8 (a=0) 3 0.1081e-232 8.00
(a=-1) 3 0.6152e-205 7.99
(a=1) 3 0.2496e-219 7.99
[4] 3 0.5045¢-221 8.00
SS8 3 0.1295e-199 7.99
T8 3 0.2398e-206 7.99
SV8 3 0.2008e-174 7.99
KT8 3 0.4915e-151 7.99

Table 4. Comparison of various iterative methods for fa(x)

the method. These fixed points are called extraneous fixed points. As we all
know, a fixed point £ is called:
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e attractive if |R/(§)| < 1,
e repulsive if |R'(§)| > 1,
e parabolic if |R/(§)] =1,

where R(z) = z — fj[cz(zqz)] Hy(z) is the iteration function.

In addition, if |R'(£)| = 0, the fixed point is superattracting. Now, we will
discuss the extraneous fixed points of each method for comparison. To make
it easier , we have taken the simple quadratic polynomial p(z) = 2% — 1, whose
roots are z = %1.

In Table 5, we have collected the extraneous fixed points of the methods Z8,
KS8, M1.Next nine methods are analyzed and found that they are unable to
compare with other methods. These methods have more than 20 extraneous
fixed points. Therefore, we have not include those results in Table 5. For
methods Z8 and KS8, we found that the methods have same ten extraneous
fixed points. All fixed points are repulsive.

The basin of attraction of iterative methods is another tool for comparing
them. Thus, we compare our methods (18) with other methods by using the
basins of attraction for polynomials p(z) = 2% — 1.

To illustrate the behavior of the iterative methods, We take 600 x600 equally
spaced points in the square [—3,3] x [-3,3] € C. In Fig. 1, the basin of
attraction for 12 methods are displayed. The red, green and blue colors are
assigned for the attraction basin of the three zeros and the roots of function
are marked with white points. Black color is shown lack of convergence to any
of the roots. In this cases, the stopping criterion ¢ = 10~* and maximum of
25 iterations are used. These dynamical planes have been generated by using
the Mathematica 11. From Fig. 1 and Table 5, we can also see that methods
M1 and Z8 is much more stable than the others. It can be observed from the
figures that the methods M1 along with the existing methods Z8 have wide
attraction basins to corresponding zeros than other methods. Z8 also has the
least number of black points.




12 Comparison of some optimal derivative—free three—point iterations 87

5. CONCLUSION

We have shown that the well-known Khattri et al. [5] methods and Zheng et
al. [14] methods are identical. For the Khattri methods, we propose a suitable
calculation formula (18) instead of (5). Our proposed method (18) represents
wide class of optimal derivative-free iterations. The method (18) contain some
well known iterations as particular cases (see Table 1). The comparison of
some eighth-order methods was made from the dynamic behavior of view. We
observe that the methods M1 and Z8 are much more stable than the others.
Note that the family of derivative-free methods (18) can be extended to the
systems of nonlinear equations and this study is currently ongoing.

ACKNOWLEDGEMENTS. The authors wish to thank the editor and the anony-
mous referees for their valuable suggestions and comments, which improved
paper. This work was supported by the Foundation of Science and Technology
of Mongolian under grant SST_18/2018.

MethodsThe extraneous fixed points £ Numbers of ¢
—0.555220397255420 £ 1.15928646739103%
—0.460115602837211 4 0.4563907035167194
78 |-0.450000501793328 £ 0.129063966 758804 10
1.89303155290658 £ 0.2335704094694797
1.79931236664623, 2.67863086464586
—0.555220397255420 £ 1.15928646739103%
—0.460115602837211 £ 0.4563907035167194
KS8 |-0.450000501793328 + 0.129063966758804 10
1.89303155290658 =+ 0.2335704094694 794
1.79931236664623, 2.67863086464586
—0.676558832763406 + 1.360182625841183
—0.624888463964184 £ 0.208901041287723
—0.493766364512498 £ 0.6070605019536254%
—0.461962845726289 4 0.2211191959865234
M1 |-0.204327487662501 % 0.86651046669376¢ 16
1.932083323 £ 0.11631568414
2.004864313 £ 0.7365790432¢
2.083325978 £ 0.4554281653¢

% To save space, we do not include other points in Table 5.

Table 5. The extraneous fixed points.
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13

(j) CH8 (1) KT8

Fig. 1. (color online) Basins of attraction of different derivative—free
three—point iterations on 2% — 1.
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Abstract—A new optimal two-parameter class of derivative-free iterative methods with the application
to the Hansen—Patrick type iterations is developed. Using self-accelerating parameters, new higher
order methods with memory are obtained. Exact analytical formulas for the optimal values of the
parameters are found for the first time. The convergence order is increased from four to seven without
any additional computations. Thus, the proposed methods with memory have a high computational
efficiency. Numerical examples and comparison with some other available methods confirm the the-
oretical results and high computational efficiency.
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1. INTRODUCTION

In numerical analysis and engineering applications, it is often required to solve a nonlinear equation
f(x) =0, where f : D c R — R is a scalar function defined on an open interval D. The main methods
for solving this equation are the Newton method given by (see [1] and references therein)

Xyl = X, — j]:((x")) (n =2 0) and Steffensen’s method [13] defined by

o S(x,)’
Xn+1 = Xy f(x, + f(x,)— f(x,)

In recent years, a large number of higher order iterative methods have been proposed [1—6] in which
the concept of increasing the order of convergence was introduced. An advantage of these methods is that
they rapidly converge to the solution. However, as the order of an iterative method increases, the number
of function computations at each step also increases. Recently, a number of simple two-parameter two-
step methods with and without memory have been proposed [2, 8, 13, 14]. The authors of these papers
used symbolic computation for obtaining the order of convergence and the error equation. This makes
computations considerably less tedious. Usually, the error equation includes the iteration parameters. A
good choice of these parameters not only improves the order of convergence but also helps design new

iterative methods with memory. The main purpose of this paper is to find the optimal parameters T, and

v, A in two-point iterative methods. Analytical formulas for y and A are obtained without using symbolic
computation.

(n > 0).

In Section 2, optimal two-point derivative-free Hansen—Patrick iterations are obtained. In Section 3,
we propose a family of two-point optimal iterations and prove a local convergence theorem. In Section 4,
new two-point iterations with and without memory are proposed. In Section 5, we present numerical
results that confirm the theoretical conclusion about the order of convergence and provide a comparison
with other known methods of the same convergence order.

29
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2. OPTIMAL TWO-POINT ITERATIONS
Consider two-point iterations
_ S griCH (2.1)
S(x,) S(x,)
where 71, is the iteration parameter. It is known that the optimal choice of the parameter extends the con-

vergence region and improves the convergence rate of iterations (2.1). A sufficient condition for the
fourth-order convergence [3] is

Yn = Xy

el = Xp —

1, =148, +20. +0(f(x,)), (2.2)
where
0, = f(yn). (2.3)
f(x,)

Condition (2.2) is often used not only for checking the convergence order of iterations (2.1) but also for
designing new optimal methods. For clearness, we recall some definitions required for the following pre-

sentation. Multipoint methods with the convergence order 2"_1, where n is the number of the function
evaluations at each iteration step, are said to be optimal [10]. Another important characteristic of iterative

methods is their efficiency index EI = p”", where p is the convergence order. By way of example, consider
the well-known family of Laguerre iterations (or Hansen—Patrick iterations) (2.1), which has cubic con-

vergence; here the parameter 7, is defined by

T, = o+1 _ Casn »
O""Sgﬂ(Ot)\/l—(oc+1)M

f(x,)’

Using the expansion of the function f(y,) about the point x,,, it is easy to show that

f"(xn)f(xn) 2
0 =2 "V L0 . 2.5
I 1) +O0(f(x,)") (2.5)
Then (2.4) yields
T o+l , o #-l (2.6)

" =2t 18, + 0

Neglect the small term O(f (xn)z) in (2.6) to obtain

a+1
T, = , o #-—1. 2.7)
o ++/1—2(o + 18,

Kansal et al. in [2] considered iterations (2.1) with the parameters defined by (2.7). Using the known rela-
tion
+ oo — l)xz _ oo —1)(o— 2)x3 n

I1-x)*=1-o0x
(I-x) 7

o X<, 2.8)
it easy to verify that (2.7) has the asymptotics

T, =146, + “T”ei +0©). (2.9)
The comparison of (2.9) with (2.2) shows that iterations (2.1) with the parameter t, defined by (2.7) are

not optimal. Indeed, three evaluations of the function f(x,), f(y,) and f'(x,) are required at each itera-
tion step in this case, and the convergence order is three. The only exceptionis oo =1, i.e.,

2

KR o
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which satisfies condition (2.2). Note that using the accelerating procedure for T, proposed in [4] fourth-

order iterations (2.1) with 1, defined by (2.10) were obtained. For this reason, the value defined by (2.10)
is called optimal. We also note that an attempt to find the optimal parameter o of the Laguerre family from

the convergence viewpoint was made in [6]. As a rule, iterations (2.1) with the parameter 1, defined
by (2.7) have only the third convergence order. Using condition (2.2), one can find an optimal modifica-

tion of the Hansen—Patrick family of order four. To this end, we seek 1, in the form

o+1
T, = H®,), o=z-] 2.11
o+ +1-2(c+1)9, ©n) 1

where H is a real function satisfying the conditions

HO)=1, H'OQ)=a, H"(0)=2b (2.12)
Let us find a and b in (2.12) such that (2.11) satisfies condition (2.2). Using the Taylor expansion of the
function H(0,) and (2.9), we obtain in (2.11)

rn=1+(a+1)en+(a+b+°‘T+3)ez+.... (2.13)

n

The comparison of (2.13) with (2.2) gives

a=0, b=12%
2

Thus, we obtain an optimal version of the Hansen—Patrick family (2.1) with the parameter defined by

= 0 +1 (1+1‘°‘ei), o % 1. (2.14)
o ++/1—2(0.+1)9, 2

If oo = 1, then (2.14) yields (2.10). Thus, we show that one can pass from any third-order iterations (2.1) to
the optimal two-point iterations using condition (2.2). Similarly, it is easy to show that the Hansen—Pat-
rick iterations have the optimal convergence order four if

Tl’l

T, = o +1 ooy (2.15)
a+1-2a+1p, 2

Note that the authors of [1] proposed a new optimal modification of the Hansen—Patrick family (2.1) of
order four; the parameter for this modification is defined by the formula

T, = o+l . o# -l (2.16)
ot Lm0 +38, — (0 =)o’
1+ (@ -19,

Even though iterations (2.1) are optimal with the efficiency index EI = 4% =~ 1.587, they require the first-

order derivative to be evaluated at each iteration step; therefore, they cannot be applied to equations with
nonsmooth functions. In [5], a rule for transforming iterations (2.1) into their derivative-free optimal ver-
sion and conversely was proposed. According to this rule, it is easy to obtain a derivative-free version
of (2.1) using (2.16). It has the form

yn = xn _f(xn),
> (2.17)
Xpe1 = Xy — THM or ['xn-H =y, _Tn f((l)yn)j,
where
Wy =X, Y, O = f1X,w,] = %ﬁ(ﬂ
and
1,=1+7,0,, 2.18)
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T, =1 o +1 1]+, -28, (2.19)
0, - 1- (0. +3)0, — (0 — 1)B’
1+ (a-1)86,
g =240, (2.20)
1+ 0,

Similarly, using the sufficient condition for the fourth-order convergence (see [7])

T, =1+d9, +0(f(x,)), (2.21)

for (2.17), a derivative-free version of (2.1), (2.14) can be easily constructed. It can be written as (2.17) with
the parameter

=l o+l (1+(3n_2_0<_—1)93)_1 Y (2.22)
0, o ++1-20+1)0, 2

Thus, we have derivative-free families of the Hansen—Patrick iterations (2.17) with the parameters of two
forms (2.19) and (2.22).

Remark 1. Generally, we can consider the weighting function

W@, o, m) = o +1 =1+en+(1—1‘Tm(a+1))ei+... (2.23)

o+ 41— m(o.+1)6,

in iteration (2.1). W(0,, o, m) is called the generalized Hansen—Patrick type weighting function. The func-
tion W(0,, a,2) leads to (2.7). It is easy to show that the iterative methods (2.1) have the optimal fourth
convergence order if T, satisfies one of the following conditions:

T, = W(B,,0,m)+ (1 + I‘T’"(a + 1)) 0, o1, (2.24)

and
T, =W(®,,0,mH®,), (2.25)
where H is a real function satisfying the conditions

H©O)=1, H'(0)=0, H"(O)=2(1+1_Tm(oc+l)). (2.26)

For example, the following functions can be used as H:

H, 1+(1+1‘Tm(a+1))eﬁ,

1
1—(1+1—Tm(a+1))ef,’

H2=

Hy =1+ Q@+ (1 - m)(o +1))0

3. THE FAMILY OF DERIVATIVE-FREE TWO-PARAMETER ITERATIONS

Consider the derivative-free two-parameter iterations

 f(x)
0, + A (w,)
- S

Xprl =V — Ty

0, + Af(w,)

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 61 No.1 2021

Vo = X,
3.1)



ON THE OPTIMAL CHOICE OF PARAMETERS 33

where w, = x, + ¥(x,), Y€ R, and ¢, = f]x,, w,] = M We want to find 7T, in (3.1) such that

iterations (3.1) have the optimal fourth convergence order. "ln"o this end, we first use the Taylor expansion
of the function f(w,) = f(x,)(1 + y0,) about the point x,. Then, we obtain

0, = f'(xn)(l + "—z"f'(x,,wj +O(fD), () = f(x), (3.2)
where
IAEAYLCA) 33)
£1(x,)
Letm, = f'q()x,,)‘ Then, using (3.2), we obtain
M, = 1 =1-% p'(x, )y + O(fD). (3.4)
A RNV B

The Taylor expansion of f(y,) about the point x, yields
F) = f(x,,)[l -, (1 - Mj] +O(f2) = f(x»[l - (1 - %”f'(x,,)v) (1 - 7%)} 1O, (3.5)

q)n n
According to (3.3), we have f(y,) = O(f (x,,)z). Similarly, the second step in (3.1) gives
AN 2
=1-7T,— 0 . 3.6
S (Xu1) ( T o +7»f(w,,))f(y")+ (f ) (3.6)
From (3.5) and (3.6), we obtain
fG) = O (3.7)
if T, is chosen such that
AN 2
- Tn YN 0 n
o, a0 )
or
= 0, + Af(w,) L O(F (3.8)
"Gy O

The Taylor expansion of f'(y,) about the point x, gives

. e B I S 2 v
f (yn) - f (xn) 1 qu) (1 . xf(wn)) + O(f;1 )’ ./;1 - f (xn)'
nyn q)n
Using (3.3) and (3.4) in the last relation, we obtain
') = fal=a,) + O(f;). (3.9)

Substitute (3.2) and (3.9) in (3.8) to obtain

1+% fy 00 o)

T, =

- {1 + By ML+ ¥0.)/, W’")f"]a +a,)+O0(f))

n

1—a, +O(f))

—1+ [1 + %Y] g, + M0 4 o p2)
I
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According to (3.3) and (3.4), we have f, = ¢, + O(f,). Therefore, we may replace f, by @, in (3.10) with-
out loss of accuracy. As a result, we have

T =142k, + MV 4 o2y (3.11)
Next, using the Taylor expansion of f(y,) and (3.4), we readily obtain
0, =201+ v+ M £y 0077y = L1 g0, + 2 £ 007
2 0, o, (.12)
=1+ m)(% + 7»%] +OUfD).
Hence, we find
a,_ 0, Mx) 112
> "1y, o, +O(f;). (3.13)
Substitute (3.13) into (3.11) to obtain
T, =1+d0, - ;‘f(;x 2 o). (3.14)

Thus, we may formulate the results in the form of the following theorem.
Theorem 1. Assume that the function f : D R — R is sufficiently smooth and has a simple zero x* € D.

Suppose that the initial approximation x, is sufficiently close fo x* and the parameter T, satisfies condition (3.14).
Then, the iterative methods (3.1) have the optimal fourth order of convergence.
Kansal et al. proposed in [2] a new derivative-free three-parameter optimal family of Hansen—Patrick

iterations
S(x,)
S
f[y, w,l+ M (w,)

Yn = Xy —

Xptl = Vn —

where

— 1 o+1
T =— —-1|H®,), o=*-1. 3.16
On(oc+\/1—2(oc+l)9n j ©n) (3.16)

Here, H is a real weight function satisfying the condition
HO) =1, H'0) = —O‘T“, |H"(0)] < oo. (3.17)

Note that iterations (3.15) have a difference in the denominator at the second stage compared with (3.1).
Using the easily verified relation

_ ¢nen — kf(wn) ] 2
s "Wn +7\‘ nl — n+7\‘ n 1_ +0 nl 318
Sy.wl+ A (w,) = (@, + M (w ))( 5700+ Af(w) (/s) (3.18)
the second step in (3.15) can be written as
=y -7 S ’
H+ n H¢n+7\‘f(wn)
where
T =(1+ 9,8, = M (w,) ji( o+l —le(O,,), o #—1. (3.19)
(L+70,) (@ + A (w,)))8, o + /1 - 2 + 1),

It is easy to show that T, defined by (3.19) satisfies condition (3.14). That is, we prove that iterations
(3.15)—(3.17) have the fourth-order convergence without using symbolic computation, which were

employed in [2]. The two-parameter iteration (3.1) with T, defined by (3.19) is a new derivative-free ver-
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sion of the family of Hansen—Patrick iterations. Similarly, using formula (3.18), it is easy to show that the
derivative-free two-parameter fourth-order methods described in [8, 10, 13] satisfy condition (3.14).

Let y=0in (3.1). Then, (3.1) give the one-parameter iterations

Y =Xy = S ) ,
f1Ge) + M (x,) (3.20)
Kyt =y =TI
f'(x,) + M(x,)
By Theorem 1, iterations (3.20) have the optimal fourth-order convergence if T, is defined by
T =1420 — M%) 4 o2 (3.21)

S'(x,)
Iterations (3.20) require three calculations of the function f(x,), f(y,), and f'(x,). The efficiency index

of these iterations is EI = 34 =~ 1.587. Now, let us try to find the optimal value of the free parameter A.

To this end, we first use the Taylor expansion of f(y,) about the point x, and relation (2.8). As a result,
we obtain

" 2 " "
f) = f(x,) [L /- Mt Mo 1, f"] +O(fH. (3.22)
AT A A A
This implies that f(y,) = O( f,,z) for every A. If we choose
A=A, = I (3.23)
21,

in (3.22), then we obtain f(y,) = O(f.). The value A, defined by (3.23) will be called optimal in the sense

that it increases the convergence order of the sequence y, from two to three. If the parameter is defined
by (3.23), expression (3.22) can be written as

2 mop2
F) = f(x»[(ﬂj - M} +O(fh. (3.24)
2 6 fn'3
Therefore,

2 m 2
0, = (%) v f’.;" +0()

which means that

mop2
Iode 232 6 400, (3.25)
2
Now, consider the Taylor expansion of f(x,,,) about the point y,:
S ) = )| 1- an A O(f(y,)): (3.26)
f'(x,) ;

It was shown above that, if the parameter is defined by (3.23), thenf(y,) = O(fns). Therefore, (3.26)
implies that

Fx) = O(f(x,)°) (3.27)

if T, is such that

S ) - A, 3
-7 | 1-22|=0
f'(xn) Tn[ 'J (.f;'l)

n
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or

o1 )
M)
/

Using the Taylor expansion of f'(y,) about the point x,, it is easy to show that

+O(f)). (3.28)

2 w2
£ = f'(xn){l —a, =Yy &] +O(f))
2 2fn'3

Taking into account (3.25), we obtain

' 2
f'(xn) _ | - 39, 130, + 0. (3.29)
') 1-a,+a,/4-36,+0(f) 4
Substitute (3.23) and (3.29) into (3.28) to obtain
2
T, =1+%+%ﬂ+39n +0(f). (3.30)

This implies that (3.27) is satisfied if the parameters are defined by (3.30) and (3.23). Therefore, we have
the following result.

Theorem 2. Assume that the function f : D c R — R is sufficiently smooth and has a simple zero x* € D.

Suppose that the initial approximation x, is sufficiently close to x* and the parameters A, and T, satisfy con-
ditions (3.23) and (3.30). Then, the iterative methods (3.20) have the sixth order of convergence.

On the basis of the optimal choice of the parameters A, and T,, we can construct converging iterations
of order six with memory:

Xy, Ay are given. Then

A, = —ﬂ, n=12,...,
2f,
2
T =1—7””—f”+[Mj +30,, (3.31)
I I
Yn = Xy — f(x”) )
f1e)+ A, f(x,)
TR — A€/ B
f1)+ A, f(x,)

where

A, = SO, + (X)) — 2f(xn)2+ S, — ’Yf‘(xn))’ ye R\(0.
(v (x,))

It is clear that £"(x,) = A, + O(f)).

Remark 2. The equation of error derived using symbolic computation plays an important role in creat-
ing new derivative-free methods with memory [1, 2, 8—13]. For example, if
"k
A=—c =—f'( ), limA, =2,
2f'(x*) o
then the convergence order of the methods increases, and at each iteration step we have the exact analyt-
ical formula (3.23).
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Similarly, it is easy to show that
fGo) =0(f(x,)) if T, =1+ %" +O0(f,). (3.32)
Note that methods similar to (3.20) were studied in [8], where

f(x,)
1) + M (x,)

A €/,
Xp+1 = Vn f'(xn)+yf(xn)G(en)’ 7\4576 R

is considered and it is shown that (3.33) has the fourth convergence order if
Yy=2, GO)=1, G0)=2 [G"(0)< e (3.34)

In [8], the self-accelerating parameter

Yn =Xy —
(3.33)

A, =) 3y (3.35)
2H,,(x,)

was used in (3.33), and it was proved that the convergence order of the iterative methods (3.33) with the

parameter (3.35) and memory is not lower than (5++17)/2 = 4.5616, (5+~21)/2 = 4.7913 and 5,
respectively. Here H,,(x,) is the Hermite interpolation polynomial of degree m = 2, 3,4 satisfying the con-

dition H,,(x,) = f'(x,). Iterations (3.33) and (3.34) can be written as (3.20) with T, defined by

fa+ M,

i.e., T, satisfies condition (3.32). If we choose A, as in (3.31), then we obtain the following iterations with
memory:

T, :(1—L+---J(1+29,, )= 1+a5”+0(f,,2);

Xp, Ay are given. Then

knz_ﬁ, an:_M’ Tn=1+&7
2/, A 2
R A €. N 3.36
I T ) + A () (33
Xpel = Vn — Tn f(yn) ’
f(x)+ N, f(x,)

which have the fifth convergence order.

Remark 3. It has already been mentioned above that T, for the Hansen—Patrick iterations is
defined by (3.19).

4. NEW ITERATIVE METHODS WITH MEMORY

Now, we construct new iterative methods with memory on the basis of (3.1) using two self-accelerating
parameters ¥ and A. It is easy to verify that

S il
T T Gy @D
and
" 2
Fw,) = ’;—fz +OU)), 4.2)

n
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with the choice
1
Y=Y, = __"
Ja
Let f(x,) e C4(1). Using the Taylor expansion for f(w,) and (4.3), we obtain
0, = 1= %+ 0| o
2 6f

n

Therefore,
fv a2 fnvfz 3
,=2=1 g G _JnJn 4 o ).
s A o
The Taylor expansion of f(y,) about the point x, gives
2 3
" 2
a
FOn) = F)| 1-— R EA

RV AN TN S YiTR)

PRAUAS A P U]
o, o, Y
Due to (4.2) and (4.4), we have

2 m 2
nn — an an _ j;1 .fn _ ;\'f(wn)
kf(w,,) [1+—2 +—4 —6f,,'3 +...](1 —¢n +j

O,
B PO Y U I |
2 4 67 0,
Using (4.6) in (4.5), we obtain

FOn) = )| e e MO o) SH o
4 6/, 0, 6/

2
- f(x,,)[ qu()w )) +OUSH.

n

n

It is clear from (4.7) that

f,) =0(f)

if
2
ay MO _
4 9,
or
_ a0,
4fw,)
Using (4.2) and (4.4) in (4.10), we obtain
7\'n = _f_n”’
21,

i.e., (4.8) holds with the choice (4.11). Furthermore, (3.6) and (4.8) imply that
fGu) = O
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if
= Ot M) e 4.13
K Foy O o
or
7, = [1 —"—5J +O(f). (4.14)
S 4

The Taylor expansion of f'(y,) about the point x, gives

2

m 2
Fo0= e[ 1-a,| |+ ] Ty o, (4.15)
-S| 2/ |G
4 4
Since
2 m p2 2 2 w02
uF 5= {1 +a—”+a—”—%+..][l +a—"+...J =1 +ﬂ+a—”—%+0(fn3), (4.16)
|- 2 4 6/, 4 2 2 6/,
4
we conclude from (4.15) that
a  f'fy
SO0 =) 1 -a, =+ == +O(f,). (4.17)
2 2/,
Using the last expression and (4.4) in (4.14), we obtain
T, = 1—0—2”+ia5 +2(1+7v,0,) + O(f), (4.18)
where the formula
a, _Jfy
1+ 7,9, = 22 =222 4 O(f;) (4.19)
2 67

is used. Thus, the results obtained above can be formulated as the following theorem.

Theorem 3. Assume that the function f : D R — R is sufficiently smooth and has a simple zero x* € D.

Suppose that the initial approximation x, is sufficiently close to x* and the parameters y and )\ in (3.1) are
chosen by

’ £
—y = A=, =L W
T T e ) 2/ (x,)

and 7, is defined by formula (3.14) (or (4.18)). Then, the iterative methods (3.1) have the seventh order of con-
vergence.

Thus, the optimal choice of parameters makes it possible to increase the convergence order from four
to seven. However, f'(x,) and f"(x,) cannot be calculated in practice, and such an improvement of con-

vergence cannot be implemented. However, we can find approximations of y, and A,,. They can be found
using the information available from the current and previous iteration steps. On the basis of versions (4.3)
and (4.11), two-point derivative-free iterations with memory with the seventh convergence order can be
constructed:

Xo,Ao,Yo are given. Then  wy, = x5 + Yo/ (%),

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol.61 No.1 2021
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3
Table 1. f ="~

Y _cos(x =) +x +1, xg = 1.5, x* = —1[14]

Methods n Ty |x, — x* p
3.1) A =-0.1,y=-0.01) 4 (3.14) 0.1014e—217 4.00
3.1 (a=1,7y=-0.01) 4 (3.19) 0.1544e¢—224 4.00
(3.20) (A =-0.1) 4 (3.21) 0.6919¢—229 4.00
Dzunic [13] (p = -0.1, y=-0.01, g(6,) =1+86,) 4 0.4682e—222 4.00
Wang-Zhang [8] (t =8,A=-0.1,G(0,) =1+2%6, +1* 9,21) 4 0.1974e—192 4.00
Kung-Traub [11] 4 0.9297e—173 4.00
Chebyshev—Halley [11] 4 0.5980e—175 4.00
Table2. f, = ¥ —cos(x® = 1) + x° + 1, xo = —1.5, x* = —1 [14]

Methods n T, |x, — x* p
(3.20) (A, ==1,"/2f) 3 (3.21) 0.1735e—56 5.00
(3.20) (A, =—1'/2fn, g =—0.1) 3 (3.32) 0.7578e—99 5.00
(3.36) (A, =-A,/2f,, Ag =—0.1) 3 0.4079e—85 5.02
(3.33)—(3.35) [8] (A, =—-H}/2f,, Ay =—0.1) 3 0.2404¢—89 5.09
(3.200 (A, =—1'/2fn> Ay =—0.1) 3 (3.30) 0.6559¢e—176 6.00
(3.31) (A, =-A,/2f0, Ay =—0.1) 3 0.4538e—125 6.00
G A, ==£"/2fn, g =—0.1) 3 (4.18) 0.3128e—93 7.00
(4.20) (A, = =Nj(x,)/2Ni(x,), Ay = —0.1, vy = —0.01) 3 (3.21) 0.4294¢—162 7.06
Dzunic [13] (p, = -0.1, v, = —0.01), g(®,) =1+ 6, 3 0.1404e—157 7.06
Cordero [14] (A, = -0.1, y, = —0.01) 3 0.1114e—157 7.06
Kansal [2] (Ay =-0.1,7, =-0.01), =B =1/2 3 0.1095e—100 7.08
¥-3x . 2

Table3. f, = e sinx + log(x” + 1), xy =1, x* = 0 [12]

Methods n A x, — x| p
3.1) (A=-0.1,y=-0.01) 4 (3.14) 0.1469¢—82 4.00
3.1 (a=1,vy=-0.01) 4 (3.19) 0.6589¢—68 3.99
(3.20) (A =-0.1) 4 (3.21) 0.3650e—83 4.00
Dzunic [13] (p =-0.1, vy =-0.01, g(6,) =1+86,) 4 0.7008e—66 4.00
Wang-Zhang [8] (+ =8, A =-0.1,G(0,) =1+2*6, +1* Gf,) 5 0.7447e—204 4.00
Kung-Traub [11] 4 0.1469e—82 4.00
Chebyshev—Halley [11] 4 0.1975¢—88 4.00

Yo =— 1 ’ anxn"_'Ynf(xn)s }\,n:_M’ =1’25"'7
N3(x,) 2N4(x,) (4.20)
v, = x, —— L)
O, + X f (W)
X1 zyn_Tn f(yn) 5 n=0,1,...,
O, + X f (W)

where 7T, satisfies condition (3.14). Here N;(¢,x,, y,_, X

n-1»
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3
Tabled. f, = ¢* “sinx + log(x” + 1), xy = 1, x* = 0 [12]

Methods n T, |x,, - x*| p
(3.20) (A, =—13'/217) 4 (3.21) 0.2170e—217 5.00
(3.20) (A, =—1'/2fn, g =—0.1) 4 (3.32) 0.3916e—220 5.00
(3.36) (A, =-A,/2fy, Ay =—0.1) 4 0.2326e—136 5.00
(3.33)—(3.35) [8] (A, =—-H{/2f;, Ay =—0.1) 4 0.2069e—122 5.00
(3.20) (A, =—1'/2fn, Ay = —0.1) 4 (3.30) 0.3111e—233 6.00
(3.31) (A, =-A,/2f,, Ay = —0.1) 4 0.2699e—291 6.00
@G A, =—=£/2f, Ay =-0.1) 4 (4.18) 0.1560e—119 7.00
(4.20) (A, = —Nj(x,)/2N4(x,), Ay = —0.1, vy = —0.01) 4 (3.21) 0.3134e—416 7.00
Dzunic [13] (py = —0.1, vy = —0.01), g(6,) =1+86, 4 0.3892e—330 6.99
Cordero [14] (Ay = =0.1, 7, = —0.01) 4 0.5524e—284 6.99
Kansal [2] (Ay =-0.1,vy =-0.01),aa =B =1/2 4 0.8391e—293 6.98

Table5. f; = (x° + x ° + 4)(x — I)sin x*, x, = 0.8, x* = 1 [13]

Methods n T, |x,, - x*| p
3.1) A =-0.1,y=-0.01) 4 (3.14) 0.3589e—140 4.00
3.1 (a=1,y=-0.01) 4 (3.19) 0.9036e—111 4.00
(3.20) (A =-0.1) 4 (3.21) 0.1007e—138 4.00
Dzunic [13] (p = -0.1, y=-0.01, g(0,) =1+86,) 4 0.4671e—130 4.00
Wang-Zhang [8] (=8, A =-0.1,G0,) =1+2%0, +1* Of,) 4 0.1552¢—96 4.00
Kung-Traub [11] 4 0.2972e—132 4.00
Chebyshev—Halley [11] 4 0.2847e—118 4.00

(X Xp_ts V1> Wy @nd (X, Wy, X1 Yoot Wa_t)» TESPeECtively. Note that procedure (4.20) was obtained in [13]
with the choice

}\‘ — N:l'(wn) .
2N;(w,)

5. NUMERICAL EXPERIMENTS
To illustrate the behavior of convergence and the efficiency of methods (3.1), (3.20), (3.36), and
(4.20), we consider a few numerical examples and make comparisons with some other existing methods
of the same order. The computations were performed in Maple 18 using the multi-precision arithmetic
with 1000 digits. In the numerical computations, we used the following functions [12—14]:
fi=e T ocos(xX — 1)+ x°+1,  x*=—1,
fr= e sin x + log(x” +1), x*=0,

=G +x+4)(x—Dsinx’, x*=1,

and the stopping rule |xn - x*| <107, The computation results are presented in Tables 1—6, where the

number of iterations (), the absolute error |xn - x*|, and the computational order of convergence (p)
defined by the formula

N ln(|xn — x*|/|x,,_1 - x*|)

T In(x, = x4/ P — %)
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Table 6. f, = (x* + x™® + 4)(x — I)sin x*, x, = 0.8, x* = 1[13]

Methods n T, |x” - x*| p
(3.20) (A, =—=1,"/2f) 3 (3.21) 0.1344e—53 4.99
(3.20) (A, =—1"/2fn, Ay = —0.1) 4 (3.32) 0.2239e—250 5.00
(3.36) (A, =—A,/2f, Ay =—0.1) 4 0.5113e—183 5.00
(3.33)—(3.35) [8] (A, =—-H}/2f,, Ay =—0.1) 4 0.1142e—213 5.00
(3.20) (A, =—=12"/2fn, Ay = —0.1) 4 (3.30) 0.2116e—259 6.00
3.31) (A, =-A,/2f0, Ay =—0.1) 3 0.1080e—60 5.96
GB.1) A, =—1"/2f> Mg =—0.1) 4 (4.18) 0.1802e—315 7.00
(4.20) (A, = =N} (x,)/2N4(x,), Ay = =0.1, v, = =0.01) 3 (3.21) 0.6532e—107 7.03
Dzunic [13] (py, = -0.1, v, = —0.01), g®,) =1+6, 3 0.1364e—87 7.05
Cordero [14] (Ay = —=0.1, v, = =0.01) 3 0.8409e—80 7.04
Kansal [2] (A =-0.1,7, =-0.01), 0 =B =1/2 3 0.9084e—72 7.02

are shown. It is seen from Tables 1—6 that the computation results completely confirm the theoretical
order of convergence obtained in the preceding sections.

6. CONCLUSIONS

A new class of optimal derivative-free methods with two free parameters is proposed. Analytical for-
mulas for the optimal values of these parameters are found, which makes it possible to improve the con-
vergence order. On the basis of this fact, new iterative methods of a high convergence order with and with-
out memory are proposed.
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Abstract

This paper stresses the theoretical nature of constructing the optimal deriva-
tive-free iterations. We give necessary and sufficient conditions for deriva-
tive-free three-point iterations with the eighth-order of convergence. We also
establish the connection of derivative-free and derivative presence three-point
iterations. The use of the sufficient convergence conditions allows us to de-
sign wide class of optimal derivative-free iterations. The proposed family of
iterations includes not only existing methods but also new methods with a
higher order of convergence.

Keywords

Multipoint Methods, Derivative-Free Methods, Order of Convergence

1. Introduction

At present, there are a lot of iterative methods for solving nonlinear equations
and systems of equations (see [1] [2] [3] and reference therein). In particular, the
derivative-free methods are necessary when the derivative of the function fis
unavailable or expensive to obtain. In the last decade, the derivative-free two and
three-point methods with better convergence properties were developed (see
[4]-[19] and references therein). It should be pointed out that most of these me-
thods were proposed mainly for the concrete choice of parameters (see Table 1).
Evidently, a systematic theory or an approach for constructing derivative-free
methods is still needed. It is therefore of interest and necessity to develop a glob-

al theory. The aim of this paper is to fill up the above mentioned gap
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Table 1. The derivative-free three-point iterative methods.

c+(a7"c+d)6’” + 0’

Methods z, H(6,)= ST
c+ +
M,,M,, M, . Thukral [24]
1+ ~ 1
Kung-Traub’s method — c=ld=-d b=——,0=
5 (1+74.-6)(1-6,) e p
Thukral [7]
P1 Thukral [24] .
1+d,0, c=ld=b=0=0
Soleymani, Khattri [5]
P2 Thukral [24] 1+6, |
1— 6, C:Ld:—wab:w:(),
Sharma [14] 1+ 4, ,,
M2 24] O/ S A b=0c=1d=-lo=—
Ly, (1+4,) ) 1-0, (1+74,)
te
method in [3] h(@n,s")=1+9”+sn+%af+b0”s"+§sj c:l,d:b:O,a):[QZCJrHa ¢J
N

Soleymani [23]

Zheng et al. [12]

Soleymani [8]

Cordero et al. [17]

Sharifi et al. [16]

Chebyshew-Halley
type method [4]

Lotfi et al. [15]

Behl. [18]

- c=ld=-d,b=w=0

1-d,6,
t— 072 C=l,d=b=0,a):%
L+r, (1+79,) (1+7¢,)
V., (xrr’yn’wn)’(}/:o)
1+ 86, 1 ~ ~
20, e 0% c=10-20 opa-p-d -1
1+ 74, +74,
— 1 H(g)
1—20{9”17 ), 1 ra
1+ ¢ c=1,d=-|2a+ ,bzi,a):H(ﬂn)
! 1+ 7, 1+ 7,
H(0)=1,H'(0)=1-2¢
14—49”4—a~ni | i
7 2 c=1,h=0d=———,0=—2
- 1+ 79, 2
1+ 79,
v, (x,.y,.0,)

and to obtain the wide class of optimal derivative-free three-point methods. The
paper is organized as follows. In Section 2, we give the necessary and sufficient
conditions for derivative-free three-point iterations to be optimal order eight.
We also establish the connection between derivative presence and derivative-free
three-point methods. In Section 3, we apply the sufficient convergence condi-
tions to obtain the optimal derivative-free methods which are dependent on pa-
rameters in the third-step of considered iterations. We obtain families of optimal

derivative-free three-point methods. They include many existing methods as
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particular cases as well as new methods with the higher order of convergence. In
last section, we present the results of numerical experiments that confirm the
theoretical conclusion about the convergence order and make comparison with
other known methods of the same order of convergence. Finally, numerical re-
sults show that new iterative methods can be significant by its high precision and

practical use.

2. The Optimal Derivative-Free Three-Point Iterations

Typically, the optimal three-point iterative methods have a form [9]

ynzx"_f,(-xn)’ anyn_z—."w’ an:Zn_an f"(zn)’ (1)
/(%) /(%) /(%)
in which the parameters 7, and «, are given by
7, =1+20, + BO; + 70, ++--, )

and

a, =1+20, +(/§+1)6}f+(2[§’+;7—4)9;+(1+46n);((z") +0(f(xn)4), (3)
Y

where f3,7 €R,and 6”:;:8}3

Theorem 1. Let the function f(x) be sufficiently smooth and have a simple

. In [9] was proven the following theorem.

root x €l . Furthermore, let the initial approximation x, be sufficiently close
to x . Then, the convergence order of the iterative method (1) is eight if and
only if the parameters 7, and o, satisfy conditions(2) and (3), respectively.

Remark. The second sub-step in (1) can be rewritten as any two-point optim-
al fourth-order method

Zn = (//4 (x)17yn)’

where ,(x,,»,) isa real function using the evaluation of f(x,), f'(x,) and
f ( yn). Each method in y, has a parameter 7, given by (2) with own Y
and 7.

Now we consider the derivative-free variant of (1)

yn=l//z(xn,y,,)=xn—m,
¢Vl
z, =¥, (x,,3,) =, 1, f(qjy"), (4)
'xn+1:Zn_dnf(Zn)5
¢}’I
where
wn:xn+7f(xn),
_Sw) =) [ fn) )L
(T TR I =fla)rek ©
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Here y,(x,.y,) is any second-order method. Actually, in Formula (4), the

fundamental quantities are

6, :f(y,,) o :f(y,,) and v —M

s S(w) ")

Then 6, = O(f(xn)), o, =O(f(xn )) for x, —x", where x" is a simple
root of f(x).If y,(x,,y,) is any two-point optimal fourth-order method
then f(z,)= O(f(xn )4) , therefore v, = O(f(x)z). The iteration (4) obtained
from (1) replacing f'(x”) by ¢,. Due to change (5), the parameters in (4)

does not remain as before and we denote them by 7, and ¢&,. We call the ite-
rations (1) and (4) the derivative presence (DP) and derivative-free (DF) variants

respectively. If we use the notations

then we have
o =c60,0 +0 =d86. (6)
DP can be derived from DF by substituting o, =6, . The following is the
main result of our work [11].
Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then, the conver-

gence order of the iteration (4) is eight if and only if the parameters 7, and

@, in(4) are given by formulas
i =1+d,0, + B0 +70° +---, )
and
G,=1+d,0,+(B+¢,)0; +(7+d,(B-1-2]))0)
+(1+2a7nﬁn)un +O(f(xn)4).

The proposed method (4) with parameters given by (7) and (8) is three-point

(8)

derivative free and optimal in the sense of Kung and Traub. Kung-Traub con-
jecture [20] states that the multi-point iterative methods, based on & evaluations,
could achieve optimal convergence order 2°'. Our proposed method is in
concurrence with the conjecture as it needs only four function evaluation per
iteration ie, k=4. Moreover, using ideas in [3] [10] one can propose more
general construction for 7, and ¢, as following:

Define 7,=h(6,,0,).a,=g(6,.0,.v,) as sufficiently smooth functions of
0,,0,,0, . It is easy to show that f(z,)= O(f(xn )4) if and only if
hyy =My =hy, =1, where h; = 7 (0,0), (i>0,;>0). Hence, under the re-
striction h,, = hy, = hy, = hy, = hy; =1, (4) is optimal if and only if

o0 =1,
100 = &oto = &oo1 = L,
8101 = &on =2,
€200 =M 110 =1 &ono =0,

DOI: 10.4236/ajcm.2020.101007
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800 =My +hyg =1, 219 =Ty — 1, &1 = 3o =1

Those can be easily checked with using (6). For the optimal formula, the re-
mainder term is O(f(xn )4> in (8) because v, = O(f(x)z). In this sense, we
can say that (4) is optimal if and only if 7,,&, can be written as (7) and (8).

When y — 0 the Formula (7) leads to (2) and the Formula (8) leads to (3). A
query may arise that there exists an optimal (DF) variant (4) for each optimal
(DP) variant (1) and vice versa. If yes, how to find its (DF) variant? To respond
this we use the connection of formulas (3) and (8). Actually, from (3) and (8) we
deduce that

G, =a,(%,3,.6,)+(d,~2)(1+6,+(d, + B)0; +20,)0,, 9)

where «,(x,,y,.4,) is obtained replacing f'(x,) by ¢, in «, (xn, Voo f'(x, ))
in (1). From (9) we find that

an (xn’yn7f,(xn)):&n (xn’yn’¢n)| ( ):dn (xn’yn’f,(xn))' (10)

=" (xn

These relations (9) and (10) give the rule of mutual transition of (DP) and (DF)
variants. There exists the one optimal (DP) variant (4) for each optimal (DF) va-
riant (1). The converse does not true. Namely there are several (DF) variants of
(DP).

3. Application of Sufficient Convergence Condition to Derive
New DF Iterations

Now we give the application of Theorem 2 to construct new iterations. The suf-
ficient convergence conditions (7) and (8) allow us to design new derivative-free
optimal methods. Depending on the form of ¢, we can obtain different itera-
tions. We consider some special cases.

1) Let & in (4) be a form

n

@=¢uM+wuw+ﬂ[§g3} an

where ¢, , and g are smooth enough functions. As regarding the iteration
(4) with a, given by (11) we give the following result.

Theorem 3. The iteration (4) with 7, given by (7) and with ¢, given by
(11) have the order of convergence eight, if the following conditions hold.

0(0)=1, ¢'(0)=d,, ¢"(0)=2(3+3,),
p"(0)=6(7+d,(B-1-¢)),
w(0)=0, ¥'(0)=1, (12)
u(0)=0, w(0)=24,,

Proof. Using the Taylor expansion of smooth enough functions ¢(6,),y (v,)
and x(6,,0,) we obtain an expression for (11). The comparison of this ex-

pression with sufficient condition (8) gives conditions (12).
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When B=7=0 in (7) the Theorem 3 leads to a theorem in [5]. That is to

say, the similar theorem was proved in [5] only for special case of 7, :
£, =1+d,0,. (13)

Therefore, Theorem 3 is more general, than that of [5]. Note that, in [5] are

proposed four variants of &, that include redundant terms like v’ and
2
{ /(2 )J . By neglecting these terms, &,
/(@)
loss of the order of convergence. When y =0 the condition (12) reduced to
p(0)=1, ¢'(0)=2, ¢"(0)=2(B+1), ¢"(0)=6(7+28-4),
w(0)=0, y'(0)=1, u(0)=0, x'(0)=4. (14)

It means that the derivative presence variant (1) with parameters given by (7)

can be simplified essentially without

and (11) has a convergence order eight under conditions (14).
Thukral and Petkovi¢ considered in [1] the particular case of (1) with ¢,
given by (11) and with

~ 1+ b0,

=% 1420 +2(2-b)0*+2(2-b) &,
Tn 1+(b—2)0n + n+ ( )n+ ( ) n

In this case /§=2(2—b) and 77:2(2—b)2 and the condition (14) coin-
cides with that of [1]. They also considered another particular case of (1) with

a, given by (11) and

T =0+ =1420,+6>+6 +---.

In this case =7 =1 and the condition (14) leads to that of [1]. The func-
tion ¢(6,) in (11) can be written as
0(6,)=%,+&,6; +d,(B-1-5)6;. (15)
Due to generating function method [10] instead of 7, we can take any func-
tion H

_c+(H'(0)c+d)0, + b,
c+df, +bo;

s bacadaQ)ERa (16)

satisfying conditions

H(0)=1, H'(0)=d,, H"(0)=25, H"(0)=67.

n

As a result, we have a family of optimal derivative-free three-point methods (4)
with (11), (15), and (16). The constants ,5’ and 7 can be expressed through
b,c,d and @ as:

- d(2b-w) d b)) &
=~ 2 J=——2+(H'(0)c+d)| == |-—.

ﬁ c }/ CZ ( ( ) )(03 CZ C}

That is we have the iterations (4) with 7, is given by (16) and «, is given

by
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&, =%,+¢0, +d,(B-1-¢)0) +(1+2d,6,)v,. (17)

n n-n

Note that the choice of parameter 7, defined by (16) includes almost all the
choices listed in Table 1 as particular cases. Thus the family of iterations (4) with
(16) and (17) represents a wide class of optimal derivative-free three-point iterations.

2) Let &, in (4) be a form

a,=7,+K(6,,0,), (18)
where 7, is given by (7) and K(6,,v,) is sufficient smooth function of 6,
and v, .

Theorem 4. The iteration (4) with T, given by (7) and @, given by (18)
has the order of convergence eight, if the following conditions hold:
K(0,0) =K, (0,0) =0, K] (0,0) =1, Kp, (0,0) = 2c§n,
K3,(0,0)=2¢,, Kp,y(0,0)=6d,(5-1-¢). (19)

Proof From (7) and (8) it is clear that

K(0,0,)=2,6;+d,(f-1-2)6; +(1+24,0,)v, +O(f(x)4) (20)

n2

which holds under conditions (19).
The (DP) variant of this iteration is obtained from (4), (7), and (18) when
y — 0. Note that the similar scheme was considered in [2].

In some cases, the form

n no

a =f(1+M]=~W(6 v,) (21)
obtained from (18) is useful. Using (20) we obtain

W(0,0,)=1+¢,6; +(-¢,d, +d,(B-1-2))0;
+(1 +c?n9n)un +O(f(x" )4)

For the iteration (4) with (7) and (21) we can formulate the following:

(22)

Theorem 5. The iteration (4) with (7) and (21) has the order of convergence
eight, if the following conditions hold.

w(0,0)=1, W,(0,0)=0, Wy(0,0)=2¢,
Wiy (0,0)=6(-¢,d, +d,(-1-2)), (23)
w!(0,0)=1, W% (0,0)=d,.

Proof. If we take (22) into account in the Taylor expansion of function
(9 v ) we arrive at (23).

n2

When » =0 the conditions (23) take a form
W(0,0) =1, W, (0,0) =0, W, (0,0) =2,

Wiy (0.0)=12(B-3), W,(0,0)=1, W}, (0,0)=2. (24)
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Remark. Obviously, as for 7, one can take any function H given by (16) in
the formulas (17) and (21).

Note that in [3] were obtained some conditions that guarantee order eight of
the method (4) with (7) and (21) ie,

=h(6,.,s,)=1+6, +s + 202 4p0s + 5524,
n n n n 2 n n-n 2 n

REACH)
EVACH

a,=h(6,.s,) u(,.s,.0,),

>

u(6,,s,,0,)=1+v, +%Uf +05 +00 +50 +
. a+2b—4
n n-n + n-n

2 2 (25)

. m

6

+d,6,)v, (ﬁ—(2+53+25,,)c?,,)93
)

+

c-2 ,
S'l

n-n

+O(f(

d m
that does not coincide with (22). Moreover, the terms 31)3 and gl): seem to

=1+¢ 607+ (
(x,)

be redundant, because it suffices to determine &, with accuracy O( f(x, )4) .

Note that (DP) methods with (7) and (21) are often used. For example,
Kung-Traub’s eighth-order method [21] has a form (1) with

= _ 1
" (1-6,)"
2 (26)
W (6,0 ):f(yn)(f () + /) )= f () 146,(6,-60,)
T )L () fE) (1-6m) (1-0,)
The Bi-Wu-Ren’s optimal eighth-order method [22] has a form (1) with
f" = h(en)s
_ L) (x)+B1(2)) 1 (27)

“ f(xn)+(ﬂ_2) (Zn) f[Zn’yn]+f[Zn’ Xps X ](Zn_yn),
where

ACARD (CA RN A U LT )

—Zz X, —Z,

But (27) is not the example for (21).
The Sharma and Arora’s optimal eighth-order method [21] has a form (1)
with

f[zn>yn] =

.
T :—’
" 1-2,

402(1-6, ) (1-v,) (28)
(~1+6,0,)((1-26,)" +(3-46,)0,0, )

=7,
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Moreover, we suggest that more general theory for 7, as
7, =140, + 0, + hyb, +h,0,0, + hy,0, +hyyf),

+hy, 0’0, +h,0,0. + hyo e

n—n

3) Let &, in (4) be a form

G- 2 (29)
flz0v )+ (2 = 2) 1207051+ (2, = v)(2, = %,) f 200 V00 %000, ]

that often used in practice, see [4] [12] [14] [15] [16]. Of course, 7, and ¢,
given by (7) and (29) satisfy the sufficient conditions (7) and (8). The (DP) va-
riant of (4) with (7) and (29) has a form (1)

_ o f(x)
PR TG)
2, =¥, (%,,,)
_, g, JGE)
X1 =2, Q, f,(x”)ﬂ (30)
f'(x,)

where o, =

f[zn’yn]+ (Zn _yn)f[yn’xn’xn] .
In [6] is proposed the eighth-order iteration (1) with (29) ( — 0) and special

T

n

1 1
T =l+—+| 14— 6. (31)
Hn 1+ f(xﬂ)

f'(x,)

Our iteration (1) with (2) and (30) is more general than that of [6].
4) Let ¢, in (4) beaform

_ 4,(1+46,+B6; +CO, +(0+A0,)v,)

a, = ,a+b+c=1, (32)
af[xn’zn]+bf[zri’yn]+cf[xnﬂyn]

where a,b,ceR.
We shall find the coefficients 4, B,C and ®,A such that the iteration (4)
with (7) and (32) has the order of convergence eight and state the following:
Theorem 6. The iteration (4) with (7) and (32) has the order of convergence
eight, if the following conditions hold:

A=(1-b)(d,~1), B=(B-d,)(1-b)+¢,(1-a),
C=a-1+(b-a)f+(1-b)y+(a+p-2)¢, +(c-2)é -, (33)
w=1-b, A=-a+b-1+d, (2-b).

Proof. Using the following relations

STxov]=6,(1-6,), f[z,.2.] =Zf_n(1 —u,),
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__ 9
f[xn’Zn] 1+fﬂe}1 (1 enun)
2140, + (- 3)0 + (2B, -7~ &) + - (34)
Tn
1 ~
el 0,+(1-d,)0; +(2d, - B, -1)6;
L:1+x+x2+x3+---, x| <1,
1-x
we get
4,

af[xn’zl1]+bf[zn!yn] + Cf[xn’yn]
~t+(averbd, )0, +(a(d, ~1)+b(F-d2)+ (a+erpd, ) )6
+(a(B+1-2d,)+b(7+d) -2pd,) (35)
+2(a +c+bc§n)(a(c§n —1)+b(B—c§:))+(a +c+ba7n)3)9:
+(b+(a+2b(a+c)+(2b-1)bd, )6, )v,+O(f ().
Substituting (35) into (32) and using the sufficient convergence condition (8)
we arrive at (33).
Thus, we have a family of optimal three-point (DF) the iteration (4) with (7)
and (32) that contains three parameters a, b and c. Now, we consider some par-

ticular cases of the iteration (4) with (7) and (32). Let a=b=1 and c=-1.
Then from (33) we find that

a=p-o, c-\Lrh)b-d, :3—7¢n) _0, A=z,
(1+74,)
Hence we obtain
 (1+((+8,)B-d,-3-18,)220, +5,0,)4,
a, =
f[xn’zn]+f[zn3yn]_f[xn’yn]
/(z )j{ 5_d /() ] (36)
1+ N 1H(1+99,)B—d, -3-18, ) 50— |9,
[ ) )| 07) o) ()
f[xn’zl1]+4f[zn’yn]_4f[xn’yn] '
or
, 4 . (7)
z
( J[l C )J(f[xn’zn]+f[zn’yn]_f[xn’yn])

where C = ( + 7 ,,) ﬁ~’ i d,—3-y4,. The sign =~ in (37) indicates that it holds

with accuracy O( f (x, ) Now, we consider concrete choice of 7,

1

_— N. 38
"Tae e TS 9
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For the choice (38) we have
p=d;-pe,
and
C= —(p + 1).

The iteration (4) with (38) and (36) (or (37)) is converted to one given by So-
leymani in [23] for p=0 and one given by Thukral in [7] for p=1. For the

choice p=-1 the parameter ¢, issimplified as

)

- , (39)
f[xn’zn]+f[zn9y;1]_f[x)ﬂyn]
or using 1+ j]:((vz‘:;)) = - fl(z,,) +0(f(xn )") we have
S(w)
a, = 4, . (40)
[1_ f(Zn)J(f['xiz’Zn]+f[Zn’yn]_f[xn’yn])
/(@)
Let
i 1 = 7 RG> 503
T, = g =1+d,0,+ 6, +70, +---, (41)
with
f=d;, 7=d,.
Then C=-¢ and we have
(1-20)+¢,0,,)4, @

ez S-S

The iteration (4) with (41) and (42) coincides with one given by Soleymani in

[23] with
4 fs(yn) 2, =~ 2
1+6" —(1 — o
- +0, —( +7¢n)(1+7¢n)3f3(xn) vl +é,00,+(6,0,) J¢n
! f[‘xn’zn]+f[Zn9yn]_f[xn’yn] |

here we can neglect the redundant terms €' —v’+6v.. Let a=1, and
b=c=0.Then from (33) we find that
A=d,-\, B=f-d, C=p(d,-2)+7-¢d.,
w=1, A=2(d,-1).

The Formula (32) is converted to

o (1+(cin ~1)0,+(B-d,)6; +(F(d,-2)+7-¢,d2)6 +(1+2(d, —1)en)un)¢
o Zn]

g , L (43)
f [xn’
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On the other hand, the direct calculation using relations (34) gives
[1_1‘(2,,)]1(1_77 £ fo[x,,,y,z]
f(@,) @) (x,)) flz.5.]
=1+(d,-1)0,+(B-4d,)0; +(7- B-n&,)0; (44)
+(1+26,6,)0, +0(f(x,)")meR.

We choose parameter 77 in (44) such that the expression (44) coincides with
the numerator of (43) within accuracy O( f(x, )4) . That is to say, that

n=-p+d..
As a result, (43) can be rewritten as
i f(zn)jl[ oo L) ] T52,14,
=== [1-(d, -8 > . (45)
“ ( f(a)n) ( )f(a)n)f (xn) f[xn’zn].f[zn’yn]

Thus, we find a family of optimal (DF) iteration (4) with (7) and (45), that

contains some existing iterations as particular cases. Thukral in [24] proposed

eighth-order derivative-free iterations (called M,,M,,M,) for some special

T,

n

fn :%:14_&"0"4_(&;_5’1)9’?4_
1-d 6, +¢,0

n’n n’n

In this case :d~,f —¢, and hence n=¢,, the &, given by (45) leads to
that of M, and M, in [24]. So, the Thukral’s method (M,,M,,M,) are in-
cluded in our family of (4) with (7) and (45). Thukral in [24] proposed also
Petkovi¢ type methods (P1,P2). For Pl we get 7, :1+d~n6’n ,ie. f=0.1In
this case 7 =c23 in (45) and our family of method (4) with (45) converted to
Pl.For P2 we get

~ 1+6,
T, = =y . (46)

In this case ﬁ = E,,c?,, and 7= dn' Thus, our family of method (4) with (45)
converted to P2 . It means that the ( P1,P2) methods are also included in our
family of (4) with (7) and (45). As stated above for the choice of (41) we have

f=d?, so (45) is simplified as

_ f(a)]‘l £%.2.16,
=|1- . 47
% [ (@) Tzl 2] )

Thus, we have optimal (DF) methods

yn :xn _f('xn)’
¢,
~ - 1
Zn:yn_z-nf;yn)a Tn:l—d~0’ (48)
Xns1 = 2y _dn f(Zn)’
¢,
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where ¢, is defined by (47). This is (DF) variant of Sharma and Sharma’s op-
timal methods given in [19] [21] within accuracy O( f (xn )4) . It means that we

develop (DF) variant of Sharma and Sharma’s method.

4. Numerical Experiments

In this section, we make some numerical experiments to show the convergence
behavior of the presented derivative-free method (4) with parameters 7, and
a,. We also compare them with the ones developed by Soleymani [23], Thukral
[7] [24] and Sharma et al [19]. For this purpose, we consider smooth and

non-smooth nonlinear functions, which are given as follows:

fi(x)=¢ +§—1, X =4.9651142

3

fi(x)=¢" 'X—cos(x2—1)+x3+l,x*:—1

f3(x):sinx+e”2 ~1,x =0
1 *
f4(x)=;—|x|,x =1.

All computations are performed using the programming package Maplel8

with multiple-precision arithmetic and 2500 significant digits. The test functions

have been used with stopping criterion |x, — x*| <107, where x" is a root of
/(x) and the approximation x, to x". In all examples, we consider that the
parameter y =—-0.01 andthat a=-2 in Chebyshew-Halley’s method.

Nowadays, high order methods are important due to scientific computations
in many areas of science and engineering use. For instance, planetary orbit cal-
culation, radiation calculations and many real life problems demand higher pre-
cision for desired results [4] [13]. The first example addresses this situation and
we apply the presented methods to solve one such physical problem. In [4] have
considered one of the famous classical physics problem which is known as
Planck’s radiation law problem. First nonlinear function f, arises from this
problem.

/1(x)=0 has two zeros. Obviously, one of the roots x =0 is not taken for
discussion. Another root is x° ~4.965114231744276303699 . Now, we give
some numerical experiments and compare new methods with some well-known
methods for the smooth function f; using the initial guess x,=6.1In Table 2
and Table 3, we exhibit computational order of convergence (COC) and abso-

lute error

X, — x*| as well as iteration numbers n are displayed. For presented

methods and test functions, by using (see, e.g., [4] [11] [16])

coc < 1l =1/ -+)

T W

X, ,—X
we have computed the order of convergence.

%

X, —X

.
X, —X

*

X, —X

;

From Table 2, we can observe that computed results completely support the
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Table 2. Convergence behavior of scheme (4) for f, (x),xo =6.

methods a, 7 n ‘x' -x, cocC
(32), (a=b=1c=-1) (38), (p=-1) 3 0.3130e—674 8.00
(32), (b=lLa=lc=-1) (13) 3 0.3422e-670 8.00
(32), (b=la=c=0) (13) 3 0.1346e—667 8.00
4)
(32), (b=1l,a=c=0) (38), (p=0) 3 0.1078e—670 8.00
(32), (b=l,a=-1,c=1) (13) 3 0.3285e—665 8.00
(32), (b=La=-1,c=1) (38), (p=0) 3 0.3378e—668 8.00
Soleymani [23] (32), (a=b=1lc=-1) (38), (p=0) 3 0.2023e-673 8.00
Thukral (7] (32), (a=b=1lc=-1) (38), (p=1) 3 0.1239¢—672 8.00
1
M M, M, [24] 45), | n= (38), (p=1) 3 0.4813e—-670 8.00
1+,
Pl Thukral [24] 45), (B=0) (13) 3 0.1271e-667 8.00
d
P2 Thukral [24] (45), ( = ] (46) 3 0.3112e-669 8.00
1+ 79,
Sharma et al. [19] 45), (n=0) (38), (p=0) 3 0.7836e-671 8.00
Table 3. Some particular cases of (4) with #, (16)and &, (29).
7, =H(8,) n ' —x, coc
methods
choices of parameters Si(x),%, =6
1 d
Lotfi [15] c=ld=- b=0,0=—" 3 0.2785e—672 8.00
1+ 79, 2

- 2-p5
King’s type [16] c=o=ld=f-1-d.b=" 0 (B=2) 3 0.1004e—674 8.00

79,
Zheng [12] c=ld=-d ,b=w=0 3 0.9462e—674 8.00

1
Sharma [14] c=ld=- b=0=0 3 0.4414e-673 8.00
1+ 7o,
2

Chebyshew-Halley [4] c=ld=-|2a+ b=—2 w=H(0,) 3 0.7466e—671 8.00

I+yp, L+yp,

theory of convergence discussed in previous section. In addition to the compar-

ison of new methods with other methods we include some special cases of pro-

posed family (4) in Table 3.

Table 4 illustrates the number of iterations needed to achieve approximate

solution and absolute residual error of the corresponding function | f(x,)

using the stopping criterion |xn - x*| <1

As 7, in Table 2 is used same in each method, it is shown in Table 4.
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Table 4. Comparisons between different methods.

7 () £ (%) fi(x)
a, X, —0.6 -1.5 Methods

a,b,c n ‘f(xn) n ‘f(x”)

a=1

b=1 4 1.60 (-691) 4 1.37 (-349)

c=-1

a=1

b=1 5 2.44 (-395) 4 2.20 (—260)

c=-1

a=0

b=1 - 5 6.80 (—1233) (4)

c=0

a=0

b=1 4 9.48 (—541) 4 9.00 (—300)

c=0

(32)

a=-1

b=1 - 5 8.55 (—988)

c=1
a=-1

b=1 4 7.55 (-316) 5 2.25(-1777)

c=1

a=1

b=1 4 2.72 (—484) - - Soleymani [23]
c=-1

a=1

b=1 4 1.75 (—449) 4 7.99 (=702) Thukral 7]
c=-1

n= 1+1}/ " 1.75 (-449) 4 9.49 (-267) M, M, [24]
£=0 5 1.05 (-875) 5 4.59 (-1301) P1 Thukral [24]
(5) )

= lj;% 5 1.09 (=707) 5 1.14 (-1709) P2 Thukral [24]
n=0 5 2.98 (-1069) 4 2.33 (-373) Sharma et al [19]

Furthermore, when the iteration diverges for the considered initial guess x,, we

« »

denote it by “-".

From Table 4, we see that the convergence behavior of the presented families

with different parameters and the iteration number 22 are the same as for all con-

sidered methods.

The result of Table 5 demonstrates that new methods iteration numbers are
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Table 5. Comparison of various iterative methods for f, (x),xo =-2.

methods a, z, n cocC
(32), (a=b=1lc=-1) (38), (p=-1) 6 8.00
(32), (b=La=Lc=-1) (13) 5 8.00
(32), (b=l,a=c=0) (13) 6 8.00

)
(32), (b=la=c=0) (38), (p=0) 6 8.00
(32), (b=La=-lLc=1) (13) 5 8.00
(32), (b=La=-lLc=1) (38), (p=0) 10 8.00
Soleymani [23] (32), (a=b=1lc=-1) (38), (p=0) 6 8.00
Thukral [7] (32), (a=b=1lc=-1) (38), (p=1) 8 8.00
Pl Thukral [24] 45), (B=0) (13) 14 8.00
P2 Thukral [24] (45), [ - f;an } (46) 8 8.00
Sharma et al. [19] 45), (7=0) (38), (p=0) 21 8.00

used lesser than other existing methods under condition |xn - x*| <107,
However, the dynamic behavior of iterations may depend on the choices of pa-
rameters and problems under consideration. In sum, numerical results show
that new iterative methods can be significant by its high precision and practical

use.

5. Conclusion

We derive the necessary and sufficient conditions for derivative-free three-point
iterations with the optimal order. The use of these conditions allows us to derive
the families of optimal derivative-free iterations. We propose the families of op-
timal derivative-free iterations (4) with 7 given by (16) and ¢, given by
(17), (29), (32), and (45). Our families include many existing iterations as par-
ticular cases, as well as new effective iterations. We reveal redundant terms in
well-known methods given in [3] [5] [23]. Dropping these terms allows us to
simplify their algorithms and save computation time.
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Abstract In this note, we develop a local construction of cubic splines and make a com-
parative analysis of local integro cubic splines. We also derive explicit formulae for a local
integro cubic spline and its first two derivatives. These formulae are short and four-point ones
that require less computational cost compared to an integro cubic spline quasi-interpolant.

Keywords Cubic splines - Approximation properties - End conditions

Mathematics Subject Classification 65D05 - 65D07

1 Introduction

In last years, the local construction of splines has attracted a lot of attention from researchers.
For example, the local integro cubic spline was constructed in Zhanlav and Mijiddorj (2010).
Quite recently, the integro cubic spline quasi-interpolant was developed in Boujraf et al.
(2015) and some comparisons were made with the results obtained in Zhanlav and Mijiddorj
(2010). As seen from Boujraf et al. (2015) and Zhanlav and Mijiddorj (2010), the approxi-
mation order of these two integro splines is equal and is O (h*). The difference between these
two splines is the construction of algorithms.

It should be mentioned that numerical results given in the work (Zhanlav and Mijiddorj
2010) show that the maximum errors are obtained near the end points as a consequence of
using recurrence relations unsuitable for finding boundary coefficients in B-spline represen-
tation. In this note, we develop a new approach to completely construct explicit formulae
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for coefficients, which eliminates above-mentioned errors and improves the computational
efficiency of the algorithm to construct the local integro cubic spline. For the sake of com-
pleteness, in Sect. 2, we develop some constructions of local cubic splines, and we show that
these splines are equivalent. In Sect. 3, we derive explicit formulae for the local integro cubic
spline and its derivatives and make comparative analysis of two existing cubic splines. For
numerical tests, several examples are given in Sect. 4 to show the efficiency of the approach
and to illustrate the theoretical results.

2 Local construction of cubic splines

We will use its B-representation of cubic splines of class C*[a, b] on the nonuniform partition:
Ay={a=xo<x1<---<xy=b>b}, hj =xj11—x;, i=001),N—1.
To this end, we extend the partition Ay by knots:
X3=X2=X_1=X)<X] < <XN=XN4l = XN42 = XN43-

We set
h3=h_=h_1=why, hy =hni1 =hyy2 =why_1, w>0.

Then, any cubic C? spline S(x) is represented as

N+1

Sx) =Y wjBjx), 2.1)

j=—1

where B (x) are normalized cubic B-splines (Zhanlav and Mijiddorj 2010) that form a basis
in space of cubic splines S € C?[a, b]. The support of Bj is supp(B;(x)) = [x;—2, xj12].
The coefficients in (2.1) are defined as (see Zhanlav 1981)

h2w?
pn—1 = So —howmp + 03 Mo,
h; — h;_ hih;_
pi = S = = S MG, i = 0(DN, (2.2)
h2 w?
N1 =Sy — hy_jwmy + = My,

where S; = S(x;), m; = S’(x;), and M; = S”(x;). We consider the quasi-interpolatory
cubic spline operator:
N+1

Qf = Y ni(f)B, (2.3)

j=—1

where the coefficients are given by the formulae (see Zhanlav 1981):

h2w?
n—1(f) = fo— howfy+ 03 1o
hi —h;_ hihi_
wi(f) = fi + = ;lﬂ—’élﬁﬁi=MDM (2.4)
h2  w?
MMHU>=fN—hN4wﬁﬁki%L—ﬁ$
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We are able to construct local cubic splines based on (2.4). Now let us consider the uniform
partition case. Using approximate formulae

1
ﬁ=gﬂenﬁﬁqah—9ﬁ+zﬁy+ow%

1
.M=ﬁ@h—wﬁ4ﬁ—m+om%

" o_ fi—H _2fi +fi—1

1
N=13QfN =5 vt 4fna = fv3) + 00,

+O0M?), i=1(1)N—1, (2.5)

1
Iy = @(HfN — 18 fn—1 +9fn-2 —2fN-3) + O (1),

in (2.4), we obtain fully local cubic splines (2.3) with coefficients given by

n—1(f) = é[(6 + Hw +4w?) fo — w18 + 10w) fi + w(9 + 8w) f» — 2w(l + w) f3],

1
po(f) = E[(7 +5w) fo + (18 = 3w) fi — O +3w) 2+ 2+ w) f3],
8fi — fi-1 — fin
6 b
1
un(f) = E[(7 +5w) fv + (A8 =3w) fy—1 — O +3w) fy—2 + 2+ w) fy-3],

wi(f) = i =1(1)N —1,

1
uN+1(f) = 8[(6 + 1w +4w?) fy — w(18 4 10w) fy—1

+wO + 8w) fn—2 — 2wl + w) fy_3].
(2.6)
Of course, these local cubic splines possess the same approximation properties as the inter-
polating ones. We consider some particular cases. Let w = 0 that corresponds to the multiple
knots at the end points. Then, (2.6) leads to

1
u-1(f) = fo, pmo(f) = 1_8[7f0 +18f1 =92 +2f3],

Sﬁ_ﬁ;—ﬁﬂ’i:HDN_L (2.7)

1
un(f) = §[7fN + 18 fn_1—9fn2+2fn-3], uns1(f) = fn.

wi(f) =

Thus, we obtain the cubic discrete spline quasi-interpolant Q3 f* with coefficients (2.7) given
in Boujraf et al. (2015), Sablonniere (2005). Now, we will find Q3 f (x;), Q5 f(x;), and
Qg’ f(x;) fori =0,1, N — 1, and N. To this end, we use the following relations (Zhanlav
1981):

2hj—1 + hx—2 m hi—1(hk—1 + hx—2)

1 =8, - My,
k-1 k 3 k + 5 k
hy — hy— hihy—
M=&+k3k%r-f1Mb (2.8)
2hi + hit hi(hi + hiyr)
//vk—i—l:Sk‘i‘%mk‘i‘%Mk,

@ Springer j bm}\c



T. Zhanlav, R. Mijiddorj

which are valid for kK = O(1) N and any cubic spline of class C 2[a, b], for instance, for the
cubic quasi-interpolant Q3 f (S; = Q3 f(x;), m; = Qg fxi), M; = Qg/ f(x;)). Setting
k =0and w = 01in (2.8), we have

h
n—1(f) = Q3 f(x0), no(f) = Qs f(xo)+ §Q/3f(x0),

hZ
n1(f) = Q3 f(xo) + h Q5 f(x0) + ?Q’glf(xo)-

From this, we find that
3
Q5 f (xo) = }—l(uo(f) —u_1(f)),
h
Q3 f(x0) = mo(f) — gQéf(xO), (2.9

3
Q3 f (x0) = h—z(m (f) — Q3 f(x0) — hQj f (x0)).
Substituting p—1(f), no(f), and w1 (f) from (2.7) into (2.9), we get
Q3 f(x0) = fo,

1
Q f(xo) = @(—Ufo + 1811 —9f2 +213), (2.10)

1
Q5 f (x0) = ﬁ(Zfo —5fi+4f2— f3).
Analogously, setting k = 1 and w = 0 in (2.8), and after some calculations, we find that

Buo(f) + 71 (f) + 2u2(f)
12 ’
—3uo + p1 +2p2(f)
4h ’

6
Q3 f(x1) = h—z(Q3f(X1) — 1 (f))-
Substituting o (f), n1(f), and pur(f) from (2.7) into (2.11), we get
Q3 f(x1) = f1,
1
Qs f(xy) = a(—zfo —-3f1+6f2— f3), (2.12)

Q3 f(x1) =

Qs f(x1) = (2.11)

1
Q3 f(x1) = ﬁ(fo —2f1+ f).
Similarly, we get

A3 f(xn—1) = fn=1, Q3 f(xn) = fN,
2 3fn—1 —6fn— _
O, f(xn_1) = fN+3fn 16h =2+ fn 3

, Ify —18fn_1+9fn-2—2fNn-3
Q3 f(xn) = oh ; (2.13)
IN=2fn1+ fn—2
h? ’
2fn =5fn-1+4fn_2— fn-3
h? )

Q5 flan—1) =
Q5 fxn) =
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Let w = 1 in (2.6). Then from (2.6) we obtain another local cubic spline Os(x) with
coefficients given by

1
p-1(f) = cl2lfo—28A+17f =411,

1
wo(f) = —=[4fo+5/1 —4f2+ f3l,

6

fii(f) = Sf"_f’gl_f"“, i=1(DN -1, (2.14)
|

wn(f) = 8[4fN +5/N-1—4fn-2+ fn-3]

1
An+1(f) = 6[21fN —28fn—1+17fn—2 —4fn-3]

Hence, we have two local cubic splines. They differ from each other only by the bordered
coefficients in (2.7) and (2.14). Note that both these local cubic splines are exact on the space
of polynomials of degree at most 3. Now, we show that they coincide with each other, although
their representations are different. Using the properties of B-spline, the direct calculations
give us

O3 f(xi)=fi, i=0,1,N—1,N. (2.15)

From (2.7), (2.10), and (2.12)—(2.15), we conclude that
Q3f(x) = Q3 f(xi), Qf(xi)=Q5f(x;), Qif(x;))=Q5f(xi), i =0()N.
Thus, we prove that local cubic splines (2.3), (2.7), and (2.3), (2.14) coincide. Another

approach to construct local cubic splines is to use a well-known not-a-knot end conditions
(Behforooz 2006; Zhanlav 1984):

In Zhanlav (1984), it was shown that the conditions (2.16) are equivalent to

8fi — fi-1 — fin
Hi = 6

, i=1,N—1. (2.17)

On the other hand, according to w = 1, and (2.2) and (2.16), we have

h? 88 — Si—1 — S
=8 ——8 =L O o N— L. (2.18)
6 6
From (2.17) and (2.18), it follows that
Si-1 — fi-1 =88 — fi) +Sit+1 — fit1 =0, i=1,N—1. (2.19)
Moreover, from (2.18), we get
mi—2 —4pi—1 + 6 —4pnitr +pniv2 =0, i=1,N—1. (2.20)
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From (2.14) and (2.20), we find that

1
m-1(f) = 6[22f0 —32/1+23f2 —8f3+ fal,

1
fo(f) = 8[4f0 +5f1 =4+ f3l,

Sfl _flgl _fi-l-l’ | = 1(1)N—1, (221)
1

An(f) = —[4fn +5fn-1 —4fn_2+ fn=3l,

i (f) =

P—‘O\

An+1(f) = — 22fN—32fN 1 +23fn—2 —8fN_3+ fn-al.

The local cubic spline satisfying the end conditions (2.16) holds (2.19). If we use relations
fico —4fi1 +6fi —4fiy1 + firo = 0valid for f(x) € C* i = 2(1)N — 2, then the
coefficients in (2. 21) lead to (2 14) within the accuracy of O (h*). This means that the last
two local splines, O3(x) and Q3 (x) with coefficients (2.21), are almost identical. Moreover,
using (2.14) and f € C*, we easily show that

ng(xi) - fl= Oh*), i =0()N. (2.22)

Note that this super convergence property holds only for uniform partitions.

3 The local integro cubic spline

The construction of local cubic splines considered in the previous section is based on the
local spline approximations. We similarly construct a local integro cubic spline and introduce
a uniform partition on [a, b],x; =a+ihfori =0,1,..., Nwithh = (b—a)/N.Let S(x)
be a local integro cubic spline belonging to C?[a, b] and satisfying the following conditions
(Behforooz 2006; Zhanlav and Mijiddorj 2010):

Xi Xi

/ S(x)dx = / u(x)dx =1;, i =1(1)N. (3.1)

Xi—1 Xi—1
We will use B-spline representation of S(x):

N+1

S(x)= Y a;B;(x), (3.2)

j==1

where B (x) are normalized cubic B-splines that form a basis for cubic splines from C ’[a, b).
According to the properties of B-spline, we have (Zhanlav 1981)

Aiy1 40 + iy

S, = . , (3.32)

m; = % i = 0(1)N, (3.3b)
. _ 2 . -

M; = oi+1 hO;l + 1, (3.3¢)
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where S; = S(x;), m; = S’(x;), and M; = §”(x;). The integro cubic spline (3.2) satisfying
the conditions (3.1) holds the following relations (Zhanlav and Mijiddorj 2010):

24
ai—2 + 1201 + 220; + 12011 + 040 = 7(11' +Liv1), i=1()N-1. (3.4)
In Zhanlav and Mijiddorj (2010), we obtained the explicit and approximate formulae:

1 .
a = 6—h(—1i—1 +41; +4li — 1iy2), i =2(1)N -2, (3.5)

and 3
i1+ o = E(Ii +1liy1), i=1(1)N -1, (3.6)

with accuracy of O (h*). The remainder coefficients in (3.2) are determined from (3.4)—(3.6)
explicitly and we present the final results:

1
o_] = @(2611 — 231 — 1415 + 2614 — 915),
1
oy = 6—h(911 — I =513 +414 — Is), (3.7)

1
) = @(h + 6 + I3 — 314 + I5),

and .
aN—1 = @(IN +6In_1 +IN—2—3In_3+ IN_4),

1
oy = 6—h(9IN —IN—1 —S5IN—2+4IN-—3 — IN-4), (3.8)

1
ON41 = 6—h(26IN — 2311 — 14INy 2 + 261Ny _3 — 9N _4).

Thus, we have the local integro cubic spline (3.2), all the coefficients of which are com-
pletely determined by the explicit formulae (3.5), (3.7), and (3.8).

For the sake of comparison, we also present here the integro cubic spline quasi-interpolant,
a modified quasi-interpolant of the Q3 f, given in Boujraf et al. (2015)

N+3

Osf =Y vil(f)B], (3.9)

i=l1

where the coefficients v; (f) are defined as follows:

1
vi(f) = ﬁ(25ll — 231 + 1313 — 31y),

1
v(f) = m(11911 + 41 — 2415 + 1014 — I5),

1
v3(f) = @(1012 =513+ 1y),
1
va(f) = m(—llll + 441y 4 5415 — 1614 + Is),

1
vi(f) = ﬁ(li—4 —155;_3 +501;_5 + 500;—y — 151; + Ii11),

5<i<N-1,

@ Springer j bm}\c



T. Zhanlav, R. Mijiddorj

Table 1 Comparison of number

Spli Total . *
of arithmetic operations for S; plnes otal oper +
and Q3 f; S;,i =0(1)N 5N+15 2N+12 3N+3
O3 fii =0()N 12N+26 5N+23 TN+3

1
UN(f) = = UN-q4 —16INy_3+54IN_2 +44INn_1 — 111y),

72h
vN+1(f) = a(IN—3 —S5Iy_2 4+ 10Iy_1),
1
vN2(f) = m( INn—4+10Iy_3 —24Iy_> +4Iy—1 + 1191y),
1
vn3(f) = ﬁ( 3Iy 3+ 13Iny_p —23INn_1 + 251y). (3.10)

Note that the support of Bl.3 is supp(B?) = [x;_4, x; ], whereas s%pp(Bj) = [xj—2, Xi+2].
Certainly, we can use (3.10) to approximate the boundary values Q3 f(x;) and its first and
second derivatives, i = 0, I, N — 1, N. In particular, we have

—3511 + 691, — 4515 + 1114

~, B
0%/ (x0) = < ,
~ —11I1 +95L 4+ 313 — 14
/ —
Q3 f(x1) = 02 , .
0. f(x )_IIIN_91N1—3IN 2+1N3 '
3/ 1242
~ 351y —69IN_1 +451ny— — 111N_ 3
/
03f(xn) = 272

Let us introduce the definition.

Definition 1 Thelocal integro splines are called m-point ones if the values of S; are expressed
by linear combination of /; at m-adjacent knots in a neighborhood of x;.

According to this deﬁmtlon and to formulae (3.5) and (3.10), the local integro sphne (3.2)
is 6-point one, whereas Q3 f is 8-point one. That is, S(x) is more compact than Q3 f.Asa
consequence, S; requires less computational cost than that of Q3 f (see Table 1). Moreover,
formulae (3.7) and (3.8) can be further simplified using the following formulae:

Iy — 4Ly + 61; — 441 + lizo = O(K%), i =3(1)N =2, (3.12)

that are valid for any function u € C*. Thus, we have
a_| = %(3511 — 591, + 4015 — 1014),
o = %(101141 =542+ 1iy3), i =0,1,
@i = ol + AL Al — ), P=2ON =2, G13)
o = 6%(10& —5Ii_1+1;—»), i=N-—-1,N,

1
UN+1 = 6—h(3SIN —59In_1 +40In_2 — 10Iy_3).
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The formulae (3.13) are more compact and uniform compared to (3.10). The values of
Si, m;, and M; are defined by (3.3) using (3.13). Moreover, by virtue of (3.12) within the
accuracy of O (h*) the values of S; can be determined explicitly as

1
So = — 2511 — 231, + 1315 — 314),

12h
S| = ﬁ@h + 13, — 513 + 1),
Si = ﬁ(_li—l +71; + 714y — 1iy2), i =2(1)N -2, (3.14)
Sn—1 = 5(311\7 +13Iy_1 —5In-2 + IN_3),
Sy = 5(2511\/ —23Iy_1 + 131y 5 — 3INn_3).

From (3.14), we see that S; = f,-, i = 0(1)N, where f, are given by (4)—(8) in Boujraf
et al. (2015). In a similar way, we obtain

mo = W(_4511 + 1091, — 10515 + 5114 — 1015),
1
= ——(—101 51 I3 — 51 I
my =55 1 +5L 4903 =514+ I5),
1 )
m; = W(Ii_l +15(Liv1 — I;) — Iiy2), i =2(1)N -2, (3.15)
1
my_| = Thz(lob\’ —5IN_1 —9IN 2+ 5IN_3 — IN_4),
1
my = W(451N — 10911 + 1051y _» — 511y _3 + 101N _4),
and .
My = — (511 — 131 1113 — 314),
0 2h3( 1 2+ 1113 4)
1
M =—031 =71 513 — 1),
1 2h3( 1 2+ 513 — 1)
1
M; = ﬁ(li—l — i —liy1 + 1), i=2(1)N -2, (3.16)
1
My_1 = 2_h3(3IN —TIN—1+5IN-2 — IN-3),
1
My = —0OIn —131N_ 11Iy_» — 3IN_3).
N 2h3( N N—1+11Iy_> N-3)

Note that formulae (3.15) and (3.16) are valid within accuracy of O(h*) and O(h?),
respectively. The formulae (3.14)—(3.16) show that, in fact, we proceed from 6-point approx-
imation to 4-point one except for m; fori = 0, 1, N — 1, N without loss of accuracy. It is
easy to show that for f € C*, the error order of the first derivative of the local integro cubic
spline defined by (3.2) and (3.13) equals to O (h*) as (2.22), whereas this error order does not
hold for (3.9) and (3.10), because (3.11) have accuracy of O (h3). This is another advantage
of our construction.
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Table 2 Results obtained for the functions f and g

N f) g(x)
[IS; — filloo.on  NCO |93 fi — filloo.N NCO [IS; — gilloo,n NCO [|Q3g; — gilloo,y NCO

8 1.080x 10704 _ 1.080 x 1079 - 3465x1079 - 3465x107 -

16 7.479x107% 385 7479 x 1079 385 2381 x107% 386 2381x107% 3.86
32 4922x 10797 392 4922x10797 392 1548 x10797 394 1.548x107Y7 3.94
64 3.157x 1079 396 3.157x 10798 396 9.859 x 1079 397 9.859x10~%° 3.97
128 1.999 x 10792 398 1.999 x 1079 398 6.216 x 10719 398 6.216x10710 3.98
256 1.257x 10710 399 1256 x 10719 399 3901 x 10711 399 3.897x10~! 3.99

Table 3 Results obtained for the functions f and g’

N ) g'(x)
1S/ = f/lloo.n NCO 1104 fi — f/lloo.y NCO [IS] = g/lloo.n NCO 11048 — &}lloo.y NCO

8  3.907x 1079 — 3.529 x 10793 - 1.789 x 10794 — 1.131x10~% -

16 2774 x 1079 381 4.853x10~™ 286 1.150 x 10795 395 1.543x10~ % 2.87
32 1.849x 1079 390 6.366 x 10°9 293 7.241 x 10797 398 2.001x10~% 2.94
64 1.193x10797 395 8.152x 10706 296 4.533x 10798 399 2.544x10706 2.97
128 7.584 x 1079 397 1.031 x 10706 298 2.834x 1079 399 3206x10"Y7 2.98
256 4.795 x 10710 398 1.296 x 10~Y7 299 1.772x 10710 399 4.020x1098 2.99

4 Numerical examples

The number of the required arithmetic operations to calculate S;, i = O(1)N is 2.4 times
less than that of ég fi = ég f(x;) (see Table 1). We construct the integro cubic splines for
functions f(x) = exp(x), and g(x) = sin(x), x € [0, 1], and calculate the maximum norm
for different values of N = 8, 16,32, .. ,256 as in Boujraf et al. (2015). The numerical
results for S; and Q3 /i obtained using both integrosplines appear to agree amazingly well
(see Table 2).

Finally, we compare the S’ with the quasi-interpolant Q'}Lf constructed in Boujraf et al.
(2015). The obtained results are listed in Table 3, where QLfi = 05f(x;) and Qf f; =
Qg’ f(x;). In Table 2, 3 and 4, numerical convergence order is denoted by NCO, maximum
absolute errors by R(N) = || - ||oo.n = maxp<;<n | - |, where NCO=log, |%|. From the
Table 3, we can see that the results obtained by our approach are better than those obtained
by the quasi-interpolant introduced in Boujraf et al. (2015).

Conclusion

We completely obtain local cubic and integrocubic splines and make some comparisons. The
algorithm to construct the local integro cubic spline is easy to implement and requires less
computational cost than that of @3 f (see Table 1). The approximation orders of the local
integro cubic and quasi-interpolant splines as well as their second derivatives equal to four
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Table 4 Results obtained for the functions f” and g”

N ) g"(x)
1S/ = f{'llo.n NCO [1Q5 fi = f{'llo,n NCO IS]" — g/'lloc,ny NCO [|Q38i — &/ lloc,y NCO

8 623x10792  _ 3.10 x 10792 - 1.99 x 10792 _ 5.823x10703 -

16 1.70x10792 187 7.09 x 10793 212 539x 10793 1.88 1.495x10793 1.96
32 444x1079 193 1.69x 109 206 139x 1079 195 3.786x10~%4 1.98
64 1.13x 1079 196 4.15x 10~ 203 354x107% 197 9.526x10~% 1.99
128 2.87 x 10794 198 1.02 x 10~% 201 892x 1079 198 2.389x10~% 1.99
256 721 x 1079 199 2.55x 109 200 223x107% 199 5986x107% 1.99

and two, respectively, whereas the first derivative approximation order of our local integro
cubic spline is better than that of Q3 f (see Table 3). Hence, the usage of the local integro
cubic spline defined by formula (3.2) and (3.13) is more suitable for applications. If we need
to use §3 f, then (3.10) should be simplified by (3.12).
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Abstract
In this paper, we obtain approximate inverses of popular tri-diagonal and penta-diagonal matrices which are used to
construct local (or a discrete quasi-interpolant) interpolatory and integro splines.

Keywords: Tri-diagonal matrices; Penta-diagonal matrices; Inverses; Local construction; Splines.

1 Introduction

The band matrices often arise in a range of science and engineering applications such as numerical solutions of

ordinary and partial differential equations, spline approximation, image and signal processing, and parallel computing,
see [1, 5, 6, 11] and references therein. In many of these areas, inversion of the tri-diagonal matrix is required. In
particular, in [11] Yamamoto obtained explicit formulas for the entries of the inverse of nonsingular tri-diagonal
matrices. In [7], Jia and Li derived the numerical or symbolic algorithms for the inverses of k-diagonal matrices.
Moreover, in [9] Smolarski discussed a particular type of banded matrix, namely a diagonally striped matrix, and the
structure of its inverse. Bickel and Lindner in [3] proved that if an infinite matrix A, which is invertible as a bounded
operator on /2, can be uniformly approximated by banded matrices then so can the inverse of A.
Although there are explicit formulas for entries of the inverse of band matrices but most of the time, practically, they
are not suitable for simple and hand calculations. In some cases, it suffices to find only approximate inverse of these
matrices. On the other hand, for band matrices, it is well established that the entries of its inverse decay exponentially
away from the main diagonal; see for example [4]. Therefore, we only need to find approximate entries @;; of the
main and its few adjacent diagonals i.e. we need

o;j, for|i—j| <k, fork=1,23. (1.1)

For example, in constructing interpolatory splines and integro-splines with small degrees, it is often required to solve
a system of linear equations
Ax =f, (1.2)

where A is a band matrix. In particular, we consider the following cases:

*Corresponding author. Email address: mijiddorj@msue.edu.mn; Tel.: +97699010363
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1. A =Tri-diag{1,4, 1},

2. A =Tri-diag{1, 10, 1},

3. A =Tri-diag{1,d, 1}, |d| > 2,

4. A =Penta-diag{1, 26, 66, 26, 1},
5. A =Penta-diag{1, 56, 246, 56, 1}.

If we have approximate inverse A~ = (o i)s [i = j| < k then we obtain the approximate solution of (1.2) as follows:

X = Z Olijf/'. (1.3)

The error of approximate solution given by (1.3) is estimated as

[Ix—X[| = max [og;]]|f]. (1.4)
[i—j|>k

From (1.4) it is clear that it is better to restrict k by small values, because of the exponential decay of entries of inverse
of band matrices [4]. To find approximate inverse A~ = (o j) we use the approximate solution of system (1.2) known
in some cases. First we consider the system (1.2) with matrix A =Tri-diag{1, 4, 1}. Such system arises in constructing
interpolatory cubic spline on the uniform partition [a, b] with knots x; = a+ih, i =0(1)n, h = h%“.

2 Approximate inverse of special tri-diagonal matrices and its applications

Let S3(x) be a cubic C? spline satisfying the interpolation conditions

S3(x;) = fi, fi=f(x), i=0(1)n. (2.5)
By using the B-spline representation of S3(x) € C2, we have:
n+1

Si(x) =Y ciBi(x), (2.6)

=1

where B;(x) are normalized cubic B-splines that constitute basis for S5 € C2[a, b] cubic splines space, see [12]. Then
the interpolatory conditions (2.5) implies

ci-1t+4citcir1=6f;, i=0(1)n, (2.7a)

or
c=6A"'f (2.7b)

Now we will find the entries of near of the main diagonal, using the approximate explicit formula given in [8, 12]

_8fimfiimfin
6 )

¢ i=1()n—1, (2.8)
with accuracy O(h*). Using (2.8), we write (2.7b) as
8fi— fio1 — fir1 + O(h*) = 36{ -+ 02 fi2 + Qi1 fio1 + Giifi + Ciji1 fi1 + Gijafiza -

If we use explicit formulas given in [11] for matrix A =Tri-diag{1, 4, 1} then it is easy to show that

Qij = oji, and 0y =0, jfor j=1,2,---. (2.9)
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Therefore, the last expression can be rewritten as
8fi — fi-1 = fir1 +O(h*) = 36{---+ ot a(fia + fira) + Ciio1 (fio1 + fir1) + Cfi}- (2.10)
If we take into account the formula
fima = 4fic1 +6fi—4fis1 + firr = O(),
which holds for f(x) € C*, then the expression (2.10) becomes
8fi— fii1 — fir1 =36{- -+ (4 2+ ;1) (fio1 + fir1) + (0 — 60:,2) fi} + O(h*). (2.11)
It follows from (2.11) that
36(40; i+ ii—1) =—1,
( ii—2 1,0 l) (212)
36((Xii — 6061',,'_2) = 8,
where o;; = O(h*), |i— j| > 3. From (2.12) the unknowns o; ;1 and o; are expressed by @; ;> as
ii—1 = 36 i,i—25 Qi = 9 ii—2 .
We know that
(AA D=1, (2.14)
which leads to |
Q2= %" (2.15a)
Hence, from (2.13) we find
5 41
1= T Qi = Taa’ (2.15b)
and
_ 4 ..
o;j = O(h*), |i—j|>3. (2.15¢)

Thus, the entries of i-th row of A~ are given by explicit formula (2.15). Further, if we use the notation M; = S’3’ (x1)

then we have the following system of equations [12]

6 .
M +4M; +M, = hj(fi—l =2fi+ fiy1), i=1(1)n—1.

The matrix of system (2.16) is, as preceding case, A =Tri-diag{1, 4, 1}. Then according to (2.13) we have

6
M; = hj{' w402 (fimz —2fi—a+ fic1 + fir1 — 2fir2 + fir3)

1

+(5g ~4i-2)(fie = 2t +2fi = 2fi1 + fiv2) + (% +604;2)(fi-1 —2fi+ fir1)}

1
= gt fira +10fi-1 = 18fi +10fi1 = fis2}
6
t 47 G2 fis = 6fi2 15 fit = 20fi+15fi1 = 6fisa + fiss} + O(R?).
Let f € C%a,b]. The Taylor expansions of f(x; +kh) give us

(kh)*
2

3 4 5
fr BB g0y B ey KD ) 4 4, k= 1,42, 43,

- /
Jeve= fitknfi + 6 24 120

from these we have
fie3—=6fia+15fi1=20fi+15fi11 — 6fisa+ firs = O(K°).

(2.16)
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Using the last formulas and (2.15a), we have

1 i1 —2fi+fi
Mi= (= fia #1071~ 18/i+ 1071 — frah +002) = TL 200 o)

Thus, we find the solution of (2.16) with accuracy O(h?) without solving it. One can write system for m; = S5 (x;)

3 )
mi—i +4m;+mip = E(fm —fi-1), i=1(1)n—1,

which has the same matrix A as (2.16). Consequently, using the same technique as above, we find

1

= E{fi—z—gfi—1+8ft+1 — fra} +O(h*). (2.17)

mi

Note that the system (1.2) with matrix A =Tri-diag{1, 4, 1} arises also in constructing integro splines.

3 Application of approximate inverse matrices on constructing integro splines

In a uniform partition case the integro quadratic spline S (x) satisfies relations [10]

3 .
Sa(xi—1) +482(xi) + S2(xig1) = Z(Ii-HH)a i=1(1)n—1, (3.18)
where
Xi+1 Xit1
/Sg(x)dx: /y(x)dx:l,-, i=0(1)n—1, (3.19)
Xi Xi

i.e. the integral values ; of function y(x) are known on the subintervals [x;,x;11], = (b — a)/n. Obviously, one can
use the B-spline representation of S5 (x):

Sa(x) = i biBi(x), (3.20)

i=—1

where B;(x) are a normalized quadratic B-splines that forms a basis for C' quadratic splines space. For convenience,
we present here B; as:

(x_-xifl)za ) [-xiflv-xl']a
1 (x—xi—1)*=3(x—x;)", [xi,%it1]
B:(x) = — i i) > yMA+1] 321
i) 2h2 ) (x—xi12)% [Xit1,Xit2], -21)
0, else.
The values of B;(x) and B}(x) at the knots are given in Table 1.
Table 1
B(x) | xic1 | xi | xiq1 | xieo
B[ 0 ]3] 5 [0
B [ 0 [5]-7]
From (3.20) and using the properties of B-spline in Table 1, we obtain
bi—1+b; bi—bj_
Sz(xi)z%, S’z(xi):lT’], i=0()n. (3.22)
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Taking into account (3.22), the relations (3.18) can be written in term of coefficients b; as:

6
bi_2+5b;i_1+5bj+bit1 = E([,'Jr]i,]), i=1(1)n—1, (3.23a)
or 6
Zi71+zi:z(li+li71)a i=1(1)n—1, (3.23b)
where
Zzi=bi_1+4b;+biy1. (3.24)
From (3.23b) we deduce
6
Zi= zlz’,
or 6
bi_1+4b;i+biy = ﬁli’ i:O(l)n—l. (3.25)
Analogously, using (3.22) and the relations
h
b; = Sz(xi) + ESZ(X,'), (3.26)
one can obtain 6
Sh(xi—1) +485(x;) + S5 (xiv1) = ﬁ(ll- —I_y), i=1(1)n—1. (3.27)

Thus, we have the systems (3.18), (3.25), and (3.27) with the same matrix but different right-hand sides. Since the
matrix of these system is A=Tri-diag{1, 4, 1}, we can use the above computed approximate inverse of this matrix.
Using (2.15), from (3.18) we find

3.1 5 41
Sa(xi) = z{7(1i73 +ho+ L+ i) — =L+ L+ L+ L)+ — L+ L)}

96 1 72 144 (3.28)
+0(h*) = og7 (3li-3 = 1Tli2+ 6201 + 621 — 17Li41 +31142)} + o(n*).
For the values of /; and y € C*, the following property holds
Lo — 4l | +6I; — 4L + 1, = O(K). (3.29)
We can simplify (3.28) by using (3.29). As a result we have
Sy(xi) = I;—h{—li_z + 7Ly + T — L y+O(RY), i=2(1)n—2. (3.30)
Using the same technique, as preceding case, in (3.25) and (3.27) we obtain
bi:W—kO(}f‘), i=1(1)n—2, (3.31)
and |
Sh(x;) = o U2 =i+ 9% i1} + o), i=2(1)n—2. (3.32)

Thus, we first obtain approximate explicit formulas for S, (x;), b;, and S’2 (x;). In [10], we have the following estimation
Sa(x;) = yi+O(h*),
but no estimation for the first derivative is given. Due to the explicit formula (3.32) one can obtain

Sy(x;) =yi+0(h*), i=2(1)n—3. (3.33)
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Another application of approximate inverse of matrix A=Tri-diag{1, 4, 1} is the well-known relations in [15]:

6
ni_1+4n;+ni 1 = ﬁ(*lifl +3L =311 +112) +0(h3), i=1(1)n-3, (3.34)

where n; = S'(x;). Such system appears in constructing quintic integro spline. As above, from (3.34) it follows that

n; = h%{ A Qo (L3 + 3L =3l + 1) + 0 (—li2 + 3L = 3L+ 1iy)
+ 0 (—Li—1 + 3L — 3L 1 +1i2) + Qi (14301 — 3L2 +1i13)
+ 02—t + 300 =3l 3+ lya) +--- F+O(R?).
Using (2.15) and
I3 — 6L+ 151,y — 201+ 15114 — 6l + 1113 = O(K7) (3.35)
into the last formula, we obtain

1
= @(Il;z — 1151 +28L; — 281 + 11114» —Ii+3) + 0(/’13) (3.36)

n;

Analogously, we can find approximate inverse of matrix A =Tri-diag{1, 10, 1}. Let S4(x) be an integro-quartic spline
satisfying the conditions (3.19) and m; = Sy (x;), T; = S’ (x;). Then we have the following relations [14]

12
mi_y + 10m; +miy = h—z(li—li_l)+0(h4)7 (3.37)
and 1
T+ 10T+ T = hj(ilifz + 31,1 —3I; +Il‘+1)+ O(hz), i= 2(1)?172 (3.38)

In [14], we obtained the approximate formula

m; 2= 1581 +15L —Li1) +O(h*), i=2(1)n—2. (3.39)

1
= — Ii*
12h2(

As above, we denote the entries of inverse matrix A~ by «;;. Then from (3.37) and (3.39) we get

1
— Ly — 151, 1+ 15; — I; =+ ol —L_3)+ 011 —1—
144( 2 1 +1) i—2(lie2 3)+ 01 (Lo 2) (3.40)
+ai(l—Ii1) + &1 (T — 1) + &2 (liva —Iipy) + -+ O(K*).
Using symmetry of A~! and matching the coefficients of /; on both sides (3.40) we obtain
1
A2+ Gii1 ==
15
1002 + 01 — 0 = REVVE (34D
o;; = O0(h"), |i—j|>3.
To derive the last formulas, we have used the relation (3.29). In addition to (3.41) we require that
206,'7,'_1 + 100 = 1, (342)
which follows from (2.14). From (3.41), (3.42) we find that
191 19 1 4
R e = — — A — (Y sy — R i— 7| > 3. .
O 1 872, al,l*l az,l+1 1 8727 az,172 al7l+2 1 248, 051] O(h ), |l ]| = 3 (3 43)
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Thus we find the entries of i-th row of A~! by formulas (3.43). Now we can use (3.43) to determine 7; from (3.38).
As above, we get
12
I = hj{' o+ 0o (—Li-3+3li2 =3l + 1) + 04 i1 (—li—2+3li-1 = 3L+ Ii11)

+ @i (—Lio1 + 30— 3Lty + Li2) + Qi1 (— 1+ 311 — 30 + 114 3)
+ Q2 (—liv1 + 32 — 33+ liya) +- - ).

Using (3.29) and (3.43) into the last formula, we obtain the well-known explicit formula that was derived first in [14]

1
T= — (~lia+ 3Ly — 3L +1is1) + O(H?). (3.44)

h4(

Now we consider the matrix A=Tri-diag{1, d, 1} with |d| > 2. Obviously, the above two cases are particular cases
of this matrix with d =4 and d = 10. From Theorem 2.1 in [7], we get the following explicit formula for Al of
A =Tri-diag{1, d, 1},

1 =

i = (—1)~ -, i:l,z,n-,m; Jmhid e n—it ], (3.45)
’ Pj—4j = Ps 2
where 1
plzd» Pz:d* ’ i:2,3,"',l’l,
Pi—1
1 .
qn:O, qi= —), l:n—l,n—2,---,1, and(xij:aji.

d—gi+1
From (2.15) and (3.43) we obtain the approximate inverse of A =Tri-diag{1, d, 1} with |d| > 2. Indeed from (3.45) it
follows that

oL 3d4sdy2 o 1-do
u_d_d l1 T 334842 —4d — 16’ ikl = >
e (3.46)
3
ai,ij:z - a” — 0(],14), |l*]| 2 3

3d3 +8d? —4d — 16’
Using the general formulas (3.46) one can easily get (2.15) and (3.43).

4 Approximate inverse of penta-diagonal matrices
Let S4(x) be an integro-quartic spline satisfying conditions (3.19) with its B-spline representation
n+1
Sa(x) =Y ciBi(x). (4.47)
i=—2
Here B;(x) are quartic B-spline which forms basis for S; € C3[a,b] spaces. Then with the uniform partition, the

conditions (3.19) imply

ci—2+26¢;_1 +66¢; +26¢i11 +civo=—1, i=0(1)n—1. (4.48)

In [14] we obtained approximate and explicit formula

o 1303 = 390> — 941y + 7461, — 159011 + 1311
b 480h

+0(r), i=3(1)n—3.
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It is easy to show that by using expression (3.29), the ¢; can be rewritten in more symmetric form

_ 1355 — 11251 +438L; — 11211 + 13115

5
S0k +0(k). (4.49)

Ci

As before, we denote the entries of inverse of matrix A =Penta-diag{1,26,66,26,1} of system (4.48) by «;;. Then,
from (4.48) and (4.49) we get

1
— (13(L_y+ L) — 112(Li— + I 4381) + O(h®) =
28800( (lia+1Iiv2) (Loy + 1) + )+ O(h°) 4.50)

s 03 (L3 +1ig3) + 0o (lioo + i) + 0 i1 (lim1 + 1) + 0l

in which we have used symmetry of ;; and o;;—; = 0;;1;, j =1,2,3.
Using (3.35), from (4.50) we have

1
o (13(Li—a + Ii2) — 1121y + Ii41) +4381) + O(h°) = (20043 + 04;) ;

28 800 4.51)
+ (=150 ;-3 + i ji—1)(Tim1 +1iv1) + (60 i—3 4+ Qi o) (lica + Liy2) + -+
Equating the coefficients of I;_; + I; j for j =0, 1,2 in both sides of last expression we get
603+ 2= 13
i,i—3 ii—2 — 78 8007
i,i—3 ii—1 = 28 800° (452)
438
20a - o = —
i,i—3 + Qi 78 8007
0 j=O(K), |i—jl > 4.
In addition to (4.52), we require that
204245204 ;-1 +6604 =1 (4.53)
which follows from (2.14). The solutions of (4.52) and (4.53) are given by
o 44 447 ot 24 529
“T 19872000 T 2649600
3443 569 (4.54)
oin—m — iR ——m—m8M—
W27 13248000 T 1589760
0 j=O0(), |i—j| >4
Now we consider the following systems
mi_o 4 56m;_1 +246m; + 56m; 1 +mio = b, (4.55)
ni—o +56n;_1 +246n; 4+ 56n;11 +njp =d;, i = 2(1)1’! -2, (4.56)
where m; = S(x;) and n; = S¢'(x;) and
30 360
bi = ﬁ(_lifl =9+ 9011 +1it2), di= F(—IH + 30 =31 +1i42)- (4.57)

These systems arise in constructing integro quintic spline [2]. An explicit and approximate solution of system (4.55)
can be found in [15] as

1

mi = oo (~2ia 250y — 2450+ 245 L1 — 25k40 4 2i3) + o), i=2(1)n—4. (4.58)
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In this case, using analogous technique, as above, we find that

1
8lay;3+160; 2+ 01 = 2700°
25
2950 ;-3 + 300 ;-2 — 904 i1 — O = 5400’
245 (4.59)
50403 +340;; 2 — 801+ 90y = 5400’
2042+ 11205 ;-1 + 24604 = 1,
0 =O0(I"), |i—j| > 4.
The solutions of (4.59) are
o 0979 873
T 21951000 1T T 7804 800
577 299 (4.60)
%2 = 5926800" %3 T T 14048 640

O j= o), |i—jl>4.

Using (3.35), (4.56), (4.57) and (4.60), we obtain (3.36).

Note that, in [13] Z-folding algorithm was proposed for solving the penta-diagonal system of linear equations, which
allows us to reduce the system by solving two tri-diagonal systems sequentially. We can find the approximate inverse
of penta-diagonal matrices by using the Z-folding algorithm and (3.46), but this approach is not suitable to obtain
explicit formulas as (3.36) and (4.58).

5 Conclusion

For some application cases it is not necessary to find all entries of the inverse matrices of band matrices. The main
advantage of our approach are simple and explicit formulas for only main diagonal and its few adjacent diagonals
entries of the inverse matrices.
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1. Introduction
Let Az be the non-uniform partition on [a,b], a =xg <x1 <---<x, =b, and hj+1 = X;+1 — X;,
i1=0,---,k—1, are step sizes. Let S(x) be a cubic spline that approximates a function u(x).
We assume that the function values u; = u(x;) are not given, but the integral values h;.1;+1 on
the subintervals [x;,x;1] of u(x) are known. The problem of the construction of an integro cubic
spline (see [2]) is to find S(x) such that
Xi+1
S(x)dx = f

X

Xi+1
ux)dx=h;i1liv1, 1=0,---,k—1. (1)

X
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We use a notation m; = S’(x;) and piecewise polynomial representation

S(x) = (1-)%(1 +28)S(x;) + t2(3 = 26)S (x4 1) + hiy 161 — (1 — hm; — tm 41},

— 9
I 20, k-1, te[0,1]. 2)
hi+1

The sufficient conditions for convexity of cubic histosplines derived in [8,9] can be written in

x€lxi,x41], t=

the form:

3
2mi_1+m; < ;(S(xz')—s(xi—ﬂ) s=m;_1+2m;, i=1,---,k,

) . )
E(S(xi—l)‘i's(xi))‘i‘ Tzl(mi—l -m;)=1;, i=1,---,k.

Obviously, the system (3) has an infinite number of solutions. In [9-11], the staircase algorithm
with three terms of recurrence relations was used to find the solutions of (3). Moreover, shape-
preserving approximations of histosplines have been studied in [3,4, 15] and references therein.
There are two traditional approaches to constructing shape-preserving histosplines: additional
knots of spline and splines of a higher order with less smoothness [4]. It is well known that the
interpolating cubic spline of the class C2 does not preserve the monotonicity and convexity of
the input data. Recently, the shape-preserving properties of the C2 local integro cubic spline
have been investigated only on a uniform partition in [14].

Usually, the monotonicity and convexity preserving property of the spline S(x) are discussed
based on the properties of the data u; = u(x;). Now, we discuss the properties of monotonicity
and convexity of the spline S(x) based on data I;. We construct a family of monotone and
convex C! integro cubic splines under a strictly convex position of the data set. In this paper,
we will give a simple constructive algorithm for C! integro cubic splines (or histosplines) that
preserve monotonicity and convexity. The remainder of this paper is organized as follows. In
Section 2, a simple method for constructing the family of C! integro cubic splines (depending
on the parameter «) is given. We discuss sufficient conditions of monotonicity and convexity
of the presented integro cubic splines. We also consider an error analysis of the integro cubic
splines in Section 3. Some numerical examples are given in Section 4 to illustrate the convexity
preserving property.

2. Construction of Convex Integro Cubic Splines
Using the ideas in [12,13] instead of inequalities in (3), we consider the following relations:
%(S(xi) —S(xi-1) = almi-1+2m;)+ (1 - a)2m;_1 + m;)
=2-a)m;-1+Q+a)m;, acl0,1]. 4)

The right-hand side of (4) is a linear combination of m;_1 +2m; and 2m;_1 + m;, and is a linear
function with respect to a. Hence, from (4), it follows when m;_1 <m; that

3
2mi_1+m; < ;(S(xi)—S(xi_l))Smi_1+2mi. )
i
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That is, instead of (3), it is possible to consider

3
;(S(xi) -Sx;i-1))=2-a)m;-1+(1+a)m;,
3L 6 1 (6)
h—i(S(xi) +S(xi-1) = h_iIi - E(mi—l —-m;).
By adding and subtracting these two equations, we get
S(x;)=1; + %{(3 -2a)m;_1+@B+2a)m;}, i=1,---,k, (7
hA
SGi-1) =1+ S{Ra—5mi —@a+Dmy), i=1,-k. (8)

From (7) and (8), it follows that
AiB-2a)m;_1+{1;(3+2a)+ ,Lti(5 —2a)lm; + /,ti(za +1Dm1 = 65Ii, = 1,--- ,k -1, 9

where
hi Iiv-1; hit+hi
=, uj=1-2;, 6I;=———, hj=——. 10
l hi+hi+1, ul 1> l hi ’ 1 2 ( )
Using the eq. (7), (8), and (9), we get a closed system of equations
12
BbG-2a)mo+Q2a+1)mq = h—(Il —S(xp)),
1
am;_1+e;m;+b;m;y1=606I;, i=1,---,k—1, (11)

12
B-2a)mp_1+@B+2a)my, = h—(S(xk) —1y),
k
where
a; = /li(3 —2a) > 0, bi = ,ui(l +2a) > 0, ci=a;+ bi +4(Oé/1i +(1 - a),ui) >a; + bi > 0. (12)

Since,
5-2a—-2a-1=4(1-a)=0,
LiB+2a)+u;(6-2a)—1;(3-2a)—u;Ca+1)=4Nja+4uy;(1-a)>0, i=1,--- k-1,
3+2a-3+2a=4a=0,
the matrix of the system (11) has diagonal dominance. Hence, the system (11) has a unique
solution (mg,m1,---,my) for each a € [0,1], and it can be easily solved by using the tridiagonal
LU decomposition algorithm. Here, S(xg) and S(x;) are assumed to be given for now. The values
of S(x;) are determined by means of (7) or (8), and the spline S is given by (2). Then, S(x) will
be C! cubic integro splines depending on the parameter a € [0,1]. Thus, the family of S(x, a)
depending on the parameter « is determined completely. As usual, the given data I; is called

monotonically increasing if
I. _I.
6I;=-"2—"L>0, i=1,,k-1, (13)
R
and convex if
Iivi—I; Ii—-I, .
- >0, 1=2,---,k—1, (14a)
h; hi-1
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or

O0I; =61I; 1. (14b)
Using the Taylor expansion of S(x) in (2), we obtain

hi (u1(1+2a)2a—5)611—612) }
S =I1+— -661
Co)=l1t 33 { 13— 2a) o
Ap-1(9—4a2)(S1p_1 -1
S(xk)=Ik+h—k{ #-109 = 40701k -1 = 040 +65Ik_1}.
12 Ur—1(1+2a)
To study the shape-preserving properties of (2), one must use the derivatives of (2), which are
S(x;+1)—S(x;
S'(x) = 621 - )% +1i) ) (1= )1 = 30m; + 63t - Dms, (15)
i+1
and
S(x;4+1)—S(x; 1
§"() = 61— 20> TS L L 6r gyt (68— Dmie). (16)
i+1 hiv1

Using (6) in (15) and (16), we obtain

S'x)=A1-)A1+1A-2a))m; +tQ2a +t(1-2a))m;;1, an
and

a+t(l-2a)
S"(x) =2—————(m;+1—m;). (18)

hi+1
It is easy to show that

1+(1-2a)t=0, 2a¢+t(1-2a)=0, for a€l0,1].
Hence, from (17), it follows that

S'(x) =0, x€lx;,x;41] if m;=0 and m;,1=0. (19)
Since a + (1 —2a) =0 then from (18), it follows that
S"(x)=0, x¢€lxi,xj+1] if mjz1—m;=0. (20)

Thus, from (19), we conclude that S(x, @) will monotonically increase if the solution to (11) is
nonnegative. In order to study the solution to (11), we use the following theorem given in [5].

Theorem 1. For the system Ax = f, suppose that
a;;=0, a;; >0, f;>0, i,j=1,---,k, i1 #].
Ifforalli,i=1,---,k,
fi> i aijﬁ,
j=1, j#i  @jj
then A is invertible, and x; = (A™'f); >0 for all i.

We show that the assumptions given in Theorem 1 are fulfilled for our system (11) under

conditions
2a1(I1-S(x0)) 51013 2¢1(I1 - S(x0))
o1 I = S(x0)>0 21
h1(5-2a) * ) =ohs hi2a+1) ’ 1= 5(x0) >0, (21a)
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aj6Ij_1 + bj5lj+1

<8I;, j=2, k-2, (21b)
Cj-1 Cj+1
205-1(S(xp)—1p) ap-161p_9 2¢p-1(S(xp) — Ip)
+ 0l _ S —I; >0. 21
hp(3+2a) oy T Ty o S lk> (21¢)

Let us summarize the obtained above results as:

Theorem 2. Let the integro cubic splines S(x,a) € Cl[a,b] be defined by (2), (7), and (11), and
the data I; monotonically increase. If the inequalities (21) are valid then m; >0 forall i =0,--- ,k
and thereby S'(x) > 0 on [xg,x3], that is, S is monotonically increasing on [a,b].

Now, we proceed to study the convexity property of S(x,a). To this end, we pass from (11) to
the following system
12
(2a+1)(m1—mg) = h—(Il—S(xo))—fimo, (22a)
1
ai(mi—1—mj-g)+ci(m;—mi-1)+bi(m;s+1—m;)

=6(01;,-0I;,_+(ai-1—a;)m;_g+(ci-1—ci)m;_1+(b;—1—-b;)m;, 1 =2,--- k-1, (22b)

3+ 200m; = mi-) = (S ()~ I~ 6. (220)
If the following equalities hold:

aji_1—a;=0, ¢ci_.1—¢;=0, b;_1—-b;=0, (23)
then the equation (22b) for i =2,--- ,k —1 leads to

ai(mi_1—-m;_g)+cimi—m;_1)+bij(mjz1-m;)=6(61; -6I;_1), 1=2,---,k—1. (24)

As above, it is easy to verify that the assumptions of Theorem 1 are fulfilled for the system

(22a), (22c¢), and (24) under conditions

I,-S
ap(EFTE = mo)  by(5T3-01)

<6ly—0614, (25a)
20+1 C3
(O0I;_1—01;_ b;(61;41—-61;
a;(61; 1 J 2)+ (0141 J)<5Ij—6Ij—1> j=38, k-2, (25b)
Cj-1 Cj+1
b—1(Z(S(x) = I)—mp_1) 18149 —61_
hi 4 2k 1012 k-3) <6lp_1-6I_9, (25¢)
3+2a Cr—2

where }%(Il —-8S(xp))—mo >0 and h—i(S(xk)—Ik) —myp_1>0. Thus, we have:

Theorem 3. Let the integro cubic splines S(x,a) € Clla,b] be defined by (2), (7), and (11), and
the data I; are convex, and mq and mp_1 are given. If (23) and (25) are valid then m;—m;_1 >0
forall i=1,---,k and thereby S"(x) > 0 on [x¢,x], that is, S(x) is convex on [a,b].

Note that the equalities (23) hold true if the step sizes of grid satisfy

hi=vVhi1hiz1, i=1,---,k—-1. (26)

Of course, the conditions (26) are fulfilled on a uniform partition. Now, we are interested in the
dependence of m; on parameter a. To this end, differentiating the system (11) with respect to
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a, we obtain
(5 -2a)mgy(a)+ (2a + Dm'(a) = 2(mo —my),
aim'i_l(a)+cim'i(a)+bim;+1(a):2)Li(mi_1—mi)+2ui(mi—mi+1), i=1,---,k-1, 27)
(B-2a)m),_;(a@)+@B+2a)m,(a) =2(mp_1 —myp).

From (27), it is clear that the right-hand side of the system (27) is negative if (23) and (25) are
fulfilled.

Theorem 4. Assume that (23) and (25) are fulfilled. Then, mi(a) is a decreasing function with
respect to a forall i=1,--- ,k—1, i.e,

m;0)=m;(a¢)=m;(1), i=1,---,k—1. (28)

Proof. By Theorems 1 and 3, the solution to system (27) is negative, that is, m(a) <0 for all
i=1,---,k—1. Hence, (28) is valid. O

Thus, we obtain feasible intervals [m;(1),m;(0)] of m;(a) that ensure the monotonicity and
convexity of splines S(x,a). From (7) and (28), we also derive the interval of S(x;, a):
hi h;
S(x;,a)e |I; + Elmi_l(l),I,- + g‘m,-(m , i=1(Dk-1. (29)

Theorem 5. Let the assumptions of Theorem 3 be fulfilled and mqy > 0. Then, S(x;) are in strictly

convex positions as the data I;, that is,

0S(x;)>06S(x;-1)=0, 1=1,---,k—1. (30)
Proof. By (4) and Theorem 3, we have
1) -SGx;) 1
580y = SZr)=SED Lo (At @mig) = my 20,
hi+1 3

By Theorem 3, we have

mizy1—m; >0, i=0,---,k—1,

m;i-m;_1>0, i=1,---,k.
From this, we obtain

Q+a)m;y1—-m)+2-a)m;—m;_1)>0,
which leads to

Q+amip1+C—-a)ym; >A+a)m;+2-a)ym;_y, i=1,---,k—1. (31)
Using (6) in (31), we get (30). O

The well-known convex interval interpolation problem was solved by three-term staircase

algorithm in [7]. From (14) and (29), one can easily see that we solved the convex interval

interpolation problem S(x;)€[l;,v;],i=0,---,k, for a particular case with [; = I; + %mi_l(l),
v;=1;+ %ml(O)
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3. Error Analysis

Now, we consider the approximation properties of convex integro cubic splines S(x,a). Using
the Taylor expansion of u € C3[a, b], one can easily obtain

hiv1—h; _
61 =u' + %u;’ +0(h?), (32)
h; , h? _
Ii=u;— —ul+—Lu +OMh®), (33)
2 6
where A = max h;.
1<i<k
From (32), it is clear that
8I; =u' +O(h?), (34)
under condition
hiv1—hi =0, (35)

Theorem 6. Let S(x, &) be C integro cubic splines defined by (2), (7), (11), and S(x;) = u;+O(h3),
i =0,k. Then, for u € C2, we have estimations
SO -u =0R7T), r=0,1,i=0, k. (36)

under (35). Here 0 =1 when a # % and 0 =2 when a = %

Proof. First, let us estimate q; =m; —u’, i =0,---,k. To this end, we pass from (11) to the

1?
system
(5 — 2a)qo + (2a + 1)q1 = d(),

aiqi-1+ciq; +biqix1=d;, i=1,---,k—1, 37
B-2a)qr-1+@B+2a)qr =dp,
where

12
d() = h—(Il - S(xo)) —{(5- 2a)u6 +Q2a+ l)ull},
1
di=661; —{a;u;_;+cu;+bju, ), (38)
12
dy = h—k(S(xk) —Ip)—{(3-2a)uj,_;+(B+2a)u}}.

Using (33), (34), (35), and the Taylor expansion of function u € C3[a,b] in (38), one can easily
obtain
d; =0(h?). (39)
Then, from (37) and (39), it follows (36) for » = 1. From (7), we get
hi
S)—ui=Ii—ui+—={B-2a)mi_1—-u’_))+B+2a)m; —u})}
12
b (40)
+ 1—5{(3—2a)u;_1 +@+2a)ul}, i=1,--,k-1.
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As above, using (33), (36) for r = 1 and the Taylor expansion of function u € C?[a,b] in (40), we
obtain

S(x)—u; =0R"™), i=1,---, k-1,
i.e., the estimate (36) is proved for r = 0. This completes the proof of Theorem 6. O

Using (34) and (36) for r = 1, it is easy to show that
Y o=Slo=0R"Y, i=1, k-1 (41)

1+0 -
From the estimations (36) and (41), it is clear that the best or optimal C! integro cubic spline
(abbr. OCICS) is derived when a = % in the sense of approximation properties. This selection
shows that using an optimal choice of parameter one can rise the order of approximation.

4. Numerical Experiments
In this section, we apply the proposed method to some numerical examples.
Example 1. We consider the histogram I ={1,2,4} on A3 ={0<4 <6 < 7}in [9]. A convex integro

cubic spline (abbr. CICS) curve with a = 0.5 is shown in Figure 1, and with a =1 is shown in
Figure 2.

Figure 1. Approximation by OCICS with a =0.5 Figure 2. Approximation by CICS with a =1 for
for Example 1 Example 1

Example 2. Next, we take u(x) = 2—v/x(2 —x), 0 < x < 2 [6]. This function is approximated by the
CICS on a uniform mesh in x, for £ = 10, in Figure 3. In Figure 4, we consider the CICS for this
function on a non-uniform grid A1 ={0<0.05<0.1<0.4<0.7<1<1.3<1.6<1.9<1.95<2}.
Near the end knots, the fitting result of the spline curve in Figure 4 is better than that of the
spline curve in Figure 3. From this example, we can see that the constructed CICS possesses
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convexity-preserving property and convergence. The purpose of this example is to observe the
effects of the changes in the step size.

Figure 3. Approximation by OCICS for u(x) on Figure 4. Approximation by OCICS for Akima’s
A1o data

Example 3. Then, we consider the histogram I ={2.86,1,0.5,1,2,2.86} on Ag ={0<1<2<4<
6 <7 < 8} which is in convex positions. Figure 5 shows that the fitting result is the same as that
presented in [9].

Fortunately, for the data of the examples above, the conditions (25) are fulfilled.

Figure 5. Approximation by OCICS for Example 3
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Example 4. The data for the last example were taken from [1] (see Table 1), where the
conditions (25) are not fulfilled. As for Akima’s data, the solution of the system (11) does
not satisfy the condition m; <m;,1,i=0,---,k—1, so we can not construct the shape-preserving
integro spline with the proposed method. Now, we can simply choose m; by

m;=06I;,, i1=1,--- k-1,

because of Theorem 6. The remainder m¢ and m, are obtained from (11) setting i =1,k -1,
respectively. The values of S(x;) are completely determined by (7) and (8). Figure 6 shows that
the last integro cubic spline with a = % has a better convexity and monotonicity property.

Table 1. Akima’s data [1]

x 0 2 3 5 6 8 9 11 12 14
I; 10 10 10 10 10 10 10.5 15 50

Figure 6. Approximation by OCICS for Example 3

5. Conclusion

In this paper, we derive a family of C! convex integro cubic splines based on sufficient conditions
for convexity. We give some sufficient convexity and monotonicity conditions for constructed
integro splines. The proposed family of splines has good approximation properties. The best
convex integro spline is obtained when the a parameter is equal to % The shape-preserving
properties of splines are demonstrated by numerical examples.
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Abstract. Integro cubic splines on a non-uniform grid using the integral values of an
unknown function are constructed. We establish a consistency relation for integro cubic
spline and derive a local integro cubic spline on non-uniform partitions. Approximation
and convexity properties of the local integro cubic splines are also studied.
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1. Introduction

Researchers from our university investigating the location of a robot equipped with
a rotary encoder device, wanted us to determine the velocity v(t) of the wheel of the ro-
tary encoder, which registers the time series when it runs a constant distance or Area=[],
cf. Fig. 1.

u(t)
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Figure 1: Time series registered with a rotary encoder.

*Corresponding author. Email address: mijiddorj@msue.edu.mn (R. Mijiddorj)

http://www.global-sci.org/eajam 406 (©)2021 Global-Science Press



Integro Cubic Splines On Non-Uniform Grids 407

Of course, the problem of determining v(t) concerns the histo-spline and the integro
spline. There are many papers constructing integro splines [1-4, 10, 16, 17], but they are
mainly focus on uniform partitions. Wu and Zhang [9] suggested an integro quadratic
spline and Kirsiaed et al. [7] constructed a cubic spline histopolation on a non-uniform
partition and studied its approximating properties. However, such splines do not solve the
above problem, since the corresponding construction requires full information for a speci-
fied interval [ ¢, t; ]. We have to provide real-time velocity v(t) so that in our situation the
local construction of the integro spline is more suitable. It is well-known [14] that the lo-
cal construction of an integro spline has a lower computational cost than the constructions
based on solving systems of linear equations.

This work is organised as follows. In Section 2, we consider an integro cubic spline on
a non-uniform grid. Section 3 discusses the local construction of the integro cubic spline.
In Section 4, we study the errors and convexity property of the spline proposed. Numerical
examples presented in the last section illustrate the accuracy of the methods used.

2. Construction of Integro Cubic Splines

Let 7 :={ty < t; <...< t;} be a non-uniform partition of [ty, t;,] and h;;; = t;;; —¢t;
are the step sizes. We have no information about the values of the function v(t). However,
it is known that for any subinterval [t;, t;,; ] the area [] under the graph of v(t) is the same.

The problem of construction of integro cubic spline consists in finding an S(t) such that
the following conditions hold:

(i) On each subinterval [t;,t;,;], S(t) coincides with a polynomial of degree three.

t; t;

1 1
(i) h_fs(t)dt:h_fv(t)dtzli’ i=1,2,...,k.

1
tig i1

It follows from Fig. 1 and condition (ii) that [] = h;I;. We denote by S3(J;) the space of
cubic splines over the partition 7, i.e.

S3(Z) = {p(X)Ip(x) € C*[to, 1},

where p(x) is a polynomial of degree at most three on ;.. According to [11], the elements
S € S3(F;) can be represented in one of the forms

S(6)=(1—&)P(1+28)S; 1 +&2(3—28)S; +h,E1—){(1—8&)s,_,—&S},  (2.1)
or
K2
S()=(1—8&)S;_; +&S;— gla(l —9)[@=8)s’  +1+&)s7],

t—tig
h;

(2.2)

te[ti—liti]b g: > 56[091]9
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where S; = 5(t;), S! = S'(t;), and S!" = S”(t;). Using (2.1) and (2.2) in (ii) yields
hi / / .
si_1+si=21i—g(si_1—si), i=1,2,...,k (2.3a)
h?
S 1+S;=2I + ﬁ (s ,+58), i=12,...,k. (2.3b)
Subtracting (2.3a) from (2.3b), we obtain

Sy +S! == (8{=5,), i=12,... .k (2.4)

P‘IN

The Eq. (2.4) implies

2! 2 Vi 1
h;'S; (hl 1+1)S - 1+15

iYi— 1 i+1
=2 (_hiSi—l +(h; + hi+1)5i - i+151{+1) > (2.5)
and consequently,
2
wiS! 48!+ S = ——(Sl,,—S/_,), i=1,2,....k—1, (2.6)
' hi+hiy '
where
=N A=1
= hi+hy Hi-

Replacing the index i by i + 1 in (2.3b) and adding/subtracing the resulting equation
to/from (2.3a) gives

1
Ii + Ii+1 = E(Si_l + 251 +Si+1) (hl i— 1 (hz + hz )S” + h12+1 l/:rl)’ (27)

i+1
_1
Ty =1 = 5 (i1 —Si 1)+—(th” +(h?—h%,)S! =K% S! ). (2.8)
It follows from (2.2) that
"_ gl (-
S"(t;—0)=~+—1L (¢, +0)=L L (2.9)
h; his1

Using (2.9) and the Taylor expansions of S;_; and S;,; in (2.7) and (2.8), we get

hi,—h; , h¥+h? 1
I+1.,=2S + ”12 LS/ + 61“51. >4 — (B3, ,8"(t; +0)—h3s"(t; — 0)),
h; + h; h? 1 (2.10)
[,—1=— 2‘“5{ + ”16 Sl”+£(h?5”’(t —0)+h, 8" (t;+0)),

i=1,2,...,k—1.
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Substituting (2.9) into (2.10) yields

2 1
Si = m(liﬂ —I)+ B (hip;SY | +3(hy—hiy1)S! — hi+1li5{;1) , (2.11)

and using (2.5) in (2.11), we get

‘Ull'Sl{_l + 55: + Ai51{+1
12 .
- W(1i+1_1i)+(hi_hi+1)sl{/’ l:1,2,...,k—1. (2.12)
i i+1

Besides, substituting (2.9) into (2.6), we obtain

S/ . =S
Sl{/ ~ i+1 i—1 (2‘13)
hi+hiy

with accuracy 0(h; — h;,;). We now can replace the term S” in (2.12) by (2.13), thus
obtaining

(2—3A;)S._; +58/+ (32, —1)S.,,
12

=—(;1—1), i=12,...,k—1. 2.14
Note that, using the continuity property of (2.1) and (2.3a), (2.13) we also arrive at (2.14).
Thus for uniform partitions, the Egs. (2.14) can be exact consistency relations [2], but
for integro cubic splines on non-uniform partition they are only approximate ones. The
Egs. (2.14) and the end conditions S(’), S,’< forms a closed system. In order to study the
solvability of this system, we calculate the term

i = —Z lag;l,
J#

where q; j are entries of the matrix of (2.14). There are three cases — viz.

1. fO<A,<1/3,then34;—1<0,2—31; > 0and r; = 2(1 +31;) > 2.
2. If1/3<A;<2/3,then3A;,—1>0,2—34; >0, and r; =4.
3.1f2/3<2A;<1,then31;—1>0,2—31; <0,and r; =8 —64; > 2.

The matrix of the system (2.14) is diagonally dominant and hence, the system (2.14) along
with the end conditions Sj and S; has a unique solution. Unlike the interpolatory cubic
splines, besides of S(’) and S,’(, an additional end condition S, or S; is needed. Thus, values
S; and S for i = 0,1,...,k are found from (2.3a) and (2.14) provided that S|, S;, and S,
(or S;) are known. Then the integro cubic spline S(t) is constructed using its piecewise
polynomial presentation (2.1).
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For the integro spline, more suitable end conditions are the third derivative continuity
conditions (or not-a-knot end conditions), viz.

S”(t;—0)=8"(t; +0), i=1,2,k—2,k—1.
They can be also rewritten in terms S’ as
ASE =S+ S, =0, i=1,2k—2,k—1. (2.15)

Well-known continuity property of (2.2) has the form

6 .
m(Jtisi_1 —S;+ WwiSip1) =wiSi +287 + 4,80, i=1,2,... k-1, (2.16)
Ut
and (2.3b) as well as with three of (2.15) together consist of 2k + 2 equations with un-
knowns Sy, Sy,...,Sk, and Sg,S7,...,S;. Solving this system of linear equations, we can
also construct the integro cubic spline by (2.2).

3. Construction of a Local Integro Cubic Spline

The continuity property (2.16) and (2.3b) give

Si=Adi + il — hi;’% (uiSy +3S/ +A:80,), i=1,2,...,k—1. (3.1)
The Egs. (2.12) and (3.1) allow us to easily construct an integro spline if S, S7,...,S; are
given. We call the grid ;. almost uniform if h;, ; —h; = o(h?),i =1,2,...,k—1, where
h = max;<;<xih;}. Therefore, on an almost unform grid the relation (2.13) is valid with
accuracy @(h?). Note that the second term on the right hand side of (2.11) equals to @(h?).
Thus ignoring it, we obtain the approximate formula

, 2

o~ ——— (I — ;). 3.2

However, we need a more accurate formula than (3.2). Therefore, our first task is to find
S!" with accuracy 0(h?). To this end, we use (2.11) in (2.13). As the result, we have

Y (1i+2—1i+1 L=y )+ 1
" hijt+hi \hy+hipo R +hi ) 12(h; +hyyy)

(A1 —Aim1), (3.3)

where
A; = hyw; S +3(h; —hi11)S] —hip1 A;S7 ;.

According to (2.9), we have

A1 —Ai g =4(hiy +hy— iy — iy 0)S! + 4y (hipy —hiy)S” (£ +0)
— 4h;(h;_; —h;))S”(t;—0)+ D;_; —D; 11 ], (3.4)
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where
. R3S (t; —0)+h?, ;S (t; +0)

i+1
hi +hiyq

i

Assume that
Di+l _Di—l - 0(?13), hi+1 - hi = ﬁ(}_lz)

Then the expression in the square bracket in (3.4) is 0(?13). Substituting (3.4) into (3.3)
and ignoring the term of @(h?) gives

§/ = 6 (1”2_1”1 —Ii_Ii—l), i=2,3,...,k—2. (3.5
hi—y+2h; +2hiy +hyyp \hyyy + iy By +hy
The remainders S{’, i =1,2,k—2k—1 are determined by the Eq. (2.15). Substituting
(3.5) into (2.11) and (3.1), we obtain approximations Sl’ and Si respectively at the interior
knots. The remainders 3; are uniquely determined from (2.3b) by setting i = 1,k, and Sl’
are determined from (2.12) by setting i = 1,k — 1. For uniform grids, the explicit formulae
(2.11), (3.1), and (3.5) coincide with the ones in [14]. In order to construct a spline of
C?[t, t;] based on these approximate values S;, 5/, and S/, we can use the following B-
spline representation:
k+1
S(t) = Z a;B;(t) (3.6)

i=—1

of the cubic splines — cf. [11]. The coefficients in (3.6) have the form

&—1 - go,
hiv1— hig{ . hihit

di=‘§i+ 3 i 6

S’, i=0,1,...,k, (3.7)
Grs1 =Sk

where t_5 =t_5, =t_; =ty and t; = ty,] = tigpo = tres [12]. Substituting the approx-
imate values of Si,gl{ , and S{’ into (3.7), we obtain the coefficients &; in (3.6). Thus we
found a local integro cubic spline in term of B-spline representation and S(t) € C?[to, t;],
cf. Fig. 2. For uniform grids, the coefficients &; coincide with the ones in [13].

18 3
12
2
10
16
1 8
14 L L L .
05 10 15 20
1 4
12
2 5
T -2 1
05 15 20 05 15 20

@ () (b) §'(¢) © 37(t)
Figure 2: The local integro cubic spline §(t) € C?[t,, t;] for v(t) =2—+/t(2—¢).
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4. Error Analysis and Convexity of Local Integro Cubic Splines

Let us consider the case of the data set I; obtained from a smooth function v(t) €
C®[to, t;]. Similar to the previous considerations, we use the Taylor expansion of function
v(t) in (ii) to obtain

hi+1 / h12+1 Vi h113+1 /// 4
Ii+1 =YV; + 5 Vi + 6 Vl + 24 i (hl+1) (41)
hi+1 / hi2+1 " h?+1 ///
Iiy1 = Vi1 — 9 Vi T 6 Vit1 — 24 Vila T ﬁ(hwl
h; h? h3
I =v,— v+ Ly — Ly g g (n?), (4.2)

21 6 24
where v; = v(t;), v = v'(t;), v{ = v"(t;), and v{" = v"’(t;). Using the Taylor expansion
and replacing i by i + 1 in (4.1) gives
2
- 2hi+1 + hi+2 ’ 3hz+1 + 3hl+1hl+2 + hz+2 "
i+2 =Vit 5 Vi 6 Vi

3 2 3
4hz+1 + 6h1+1hl+22: 4hl+1h1+2 + h1+2 e ﬁ(h“) (4.3)

Analogously, replacing i by i —1 in (4.2) gives

2h;+h;_, , 3h?+3h_ hi+h2,
2 6 K

3 2 2 3
| 4k} + 6h?h; 12+44h i+ R3 s o).

Ii g =v;i—

Subtracting (4.1) from (4.3), we have

2 2h; 1 +h;
(I~ 1) =] M"iﬂ
hiy1+hiso 3

+ 3hl+1hl+2 + h

3h2
+
12

i+1

22y 1 o(h®). (4.4)

Similar considerations show that
2 hi+1 — hi " h3 +h

i+1 7

- (I,.—-I)=v + ! !
h; +hi+1( i 3 i 12(h; +hi+1)vl
—h?“ WO o(h?), (4.5)
60(h; + hit1) i '
% +h; 4
hi_1 +h; Ui=li) =vi== 3 =
3h2 +3h;h;_; + h?

=Lyt o(h®). (4.6)

12
We are ready to prove the following theorem.
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Theorem 4.1. Let v(t) € C>[t,, ti], S; be determined by (2.3b), (3.1), 31/ by (2.11), (2.12),
S ! by (2.15), (3.5) and the grid is almost uniform. Then the following estimates

S/ —v'=0(h*), i=0,1,...,k, (4.7)
§i—v/=0(h*), i=0,1,...,k, (4.8)
Si— v=0(h*), i=0,1,...,k (4.9)

hold.

Proof. First, we establish the estimate (4.7). It follows from (4.4) and (4.6) that

6 Ii+2_Ii+1 Ii_Ii—l ) " bl " 2
— =v.+—v."+0\h 4.10
hiy +2h; +2hiyy + Ry (hi+1 +hiya hig+h TR ()., @10

where 2 2
b, = 3(hf,, —h)) + B(hi+1hi-;12 hihi 1) + hip — iy . (4.11)
i

On an almost uniform grid, the coefficients in v are of @(h;1—h;) = 0 (h?). The relations
(3.5) and (4.10) show that

S/ —v’=0(h?), i=2,3,... k-2
For remaining i, the estimates (4.7) follow from the relation
Ai (Sl// 1~V 1) ( s! VH) + Ui (Sz+1 Vi) =— (Aiviﬁ—1 v+ 1+1) ﬁ(hz)

which is a consequence of the not-a-knot relation. If v(t) € C>, then using (4.5) in (2.11),
we get

- 1 - -
Si—vi= _(hi“i (Sl{/—1_Vi//—l)+3(h'_hi+1)(5{/_"i”) hisa A (870 — Vi )

12
—2 1
+h.+h.+1(1i+1—1i)— / (hlul L+ 3R —hip )V —h Al
1 1
1
12(}““1( Vi//—l)+3(hi Rist) (87 =) = hiva 2 (81 —viiy) ) + 0(R*).

Using (4.10) and (4.11) for i — 1, and i + 1 in the last equality, we get

_ hyibi_ s —Rioy Ash:
hipsi (87 =i 1) =hia i (S = Vi) = o — 1 HECHL S 4 o (h?).

Therefore, we have )
Si—vi=0(h*), i=3,4,....k—2.

For the remaining i, the proof of the estimates (4.8) is based on the relations

K (S‘l{—l l 1) +5 (S ) + A’ (Sl+1 l+1)
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_ 12
hi +hiq
=o(h?),

(i1 — 1) + (i —hiy ) (87 —v]) + (hy — Ry V) — v, —5v) — A,

which are the consequence of (2.12). Further, it follows from (3.1), (4.1), and (4.2) that

Si—vi = Al + il — i l+1( (87 —vily) +3(5 v+ 2, (57, V{:Ll))
—v,— h;llﬂ (v +3v + A,
h h1+1( (S )+3(Sl/—vl/)+l (Sl+1 H_l )+ﬁ(h4) (412)

Consequently, (4.12) implies (4.9) fori =1,2,...,k—1. If i = 0 or i = k, the estimations
(4.9) follow directly from (2.3). O

Remark 4.1. The proof of Theorem 4.1 show that on any non-uniform grid we have
§{’—vi’/ = 0’(?1), 5{—1/1./ = 0’(?12), Si—v; = 0’(?13).

Remark 4.2. The estimates (4.7)-(4.9) are pointwise ones. However, [12, Theorem 2] and
Theorem 4.1 allow to establish global approximation errors. More exactly, if the grid is
almost uniform, then under the assumptions of Theorem 4.1, the local integro cubic spline
S(t) in (3.6) satisfies the estimates

||§(r)(t) _v(r)(t)”OO = 0(}_14_r), r=0,1,2.

Theorem 4.2. If the grid is almost uniform, then under the assumptions of Theorem 4.1, the
spline S(t) in (2.2) with the coefficients S; and 5{’ satisfies the estimates

sV v, =o(h*T), r=0,1,2. (4.13)

Proof. First of all, we show (4.13) for r = 2. Exploiting the second derivative of (2.2),
we consider the equation

SU)—=v"(t)=(1—1) (S// V//) +t (Sz+1 {;1)

+[A—tw + v —v"(1)] (4.14)
on the interval [t;,t;,;]. The Taylor expansions

(4)( t) 2

v/ =v"(6) =" ()this, + 2, +o(h?

i+1 i+1

v®(¢)
2

v =y () +v"(0)(1 = hiy 47 (1—t)rd +o(r

i+1
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lead to the relation

1/ 1/ 1 2
(1=t +tv, —v'(t) = (th

Combining it with (4.7), (4.8) in (4.14) shows that
s"(t)—v"(t)=0(h*), telt,tin], i=0,1,....k—1.

Thus (4.13) is proven for r = 2. Now we can use (2.2) and obtain

h?
S(O=v(0) = (1= (S; =) + t(Si1 = Vi) = =g t(1= 1)

x[@=0)(s/—v/)+@+0)(s!, |+E,

i+1 1+1

where )

hl+1
E;=Q—t)v;+ tu; . — tQ—t) 2=t/ +@— W ]—v(D).

As before, one can use the Taylor expansion of v € C° to check that
E; = o(h%).

The relations (4.16), (4.7), (4.8) and (4.15) show that S(t) —v(t) = ﬁ(}_l4).
From the first derivative of (2.2), we get
h2
S; —Si1 (s +5/_ 1)—— S/ —s!,

which yields

s’(r):%(s +50,)— ”1[(1 at+262)s! +(1-2¢2)s%, |.

Considering the residue

(S;=v)+(S; ) h
S/ t)— / t) = i+1 1+1 i+l
(t)—v(t)= 7 ,

x [ (1—4t+2e2) (! —v/)+(1—262) (S, —v/) |+ F

where

(v +v )~ hzl((l at+262)v +(1—262)v/;, ) —v'(0)

and using the Taylor expansion of v € C* shows that
F;=o0(h®).

Combining (4.7), (4.8), (4.18) and (4.17) produces (4.13) for r = 1.
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(4.15)

(4.16)

“4.17)

(4.18)
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Remark 4.3. If the grid is almost uniform, then under the assumptions of Theorems 4.1
and 4.2 the following estimates

590 -0, = o), r=0.1,2
hold.

Now, we study the convexity of the local integro cubic splines. As usual, given data I;
are called convex if
ai—ai_120, i:2,3,...,k—1, (419)

where a; = 2(I;.; —I;)/(h; + h;;1). This definition agrees with the definition of the convex
data — cf. [5,6,15].

Theorem 4.3. Let the data I; be convex and

Bo— hioy +2h; +2hiy, + hi+2'

[ 3
If
flzaz + i:lgag > fl3a1 + i:lza4, (4203)
hi—o—a+ s @ios = Ty s + hisais, (4.20b)

then §”(t) > 0 for all t € [tg, t;], i.e. S(t) is convex on [ty, t;].
Proof. According to (3.5) and (4.19), we have
S’>0, i=2,3,...,k—2.
The not-a-knot end point condition (2.15) implies

s _ S — Sy e — U122)8 — uoSy 4.21)
0 A1 A1Az ' .

Since 1—pyAy = py + A1 Ay > Uy and S > SY by (4.20a), the Eq. (4.21) yields S”(t,) > 0.
Consequently, taking into account the Egs. (2.15), we obtain

S"i/ = Alg(/)/ + ‘U/]_S'g > 0.
Analogously, conditions (2.15) and (4.20b) yield
S/>o0, S/ >0,

and using the representation (2.2) for S(t), one obtains

S"(&)=(1-8)8",+&8">0, £<[0,1]. O
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If v; are the data in the interpolation problem, the convexity is defined as

Viti—Vi  ViT Vi

>0, i=1,2,...,k—1, 4.22)
hit1 h;
cf. [6].
Note that for a smooth function, we have
2 (Vi+1 —Vi Vi—Vi ) " 72
— =v'+0(h?). (4.23)
hi +hi, i1 h; ' ( )

From (3.5), (4.7), and (4.23), we see that

2 (Ii+2_1i+1 Li—Iig ) 2 (Vi+1 —Vi Vi _Vi—l)

b \hiyy +hiy hig+hi) Ri+hig \ Ry hi

with the accuracy @(h?). Therefore, (4.19) implies (4.22) with the accuracy @(h?). The-
orems 4.2 and 4.3 show that the local integro cubic spline have good approximation and
convexity properties. Note that for the interpolation cubic spline S(t) € C? the sufficient
conditions for convexity are
2 2 2 -
207 — A — AR >0, i=1,2,...,k—1,
2 2 2 2
205—AT7=0, 2A;—A;_; =0,

where Al.z = f[ti_1,t;, tis1], cf. [8]. On the other hand, the local integro cubic spline is
convex under conditions (4.19) and (4.20). This is one of the advantages of our local
integro spline as compared to the interpolation C? cubic spline.

5. Numerical Examples

We tested the formulae (4.7)-(4.9) for a uniform grid and some test functions, and the
results are consistent with the theoretical ones. Suppose that the wheel of the robot starts
at t, = 0 and runs by v(t) = sin(t) with [] = 0.2, then stops at t;, = . We construct the
velocity by (2.2), using the coefficients obtained from a system of (2k+2) linear equations
and the local integro spline (3.6). Fig. 3 shows the proximity of the curves appear but the
local one (green online) rises up a bit at the ends. Next, we want to know the behavior
of the real-time situation. The wheel with an encoder starts at t, = 0 and runs by v(t) =
0.9sin(mt) +0.76t with [1=0.1. Local construction (dashed line in Fig. 4) fits the original
velocity. As the wheel goes slowly, errors may arise near that time interval. From this
example, the local integro spline successfully discovers the velocity in real-time. At the
beginning of the movement, the velocity can be computed with seven values [tq, -, tg],
and in the middle of the movement — with six values [h;_5,h;_1, - ,h;43]. In order to test
the convergence order of the method for v(t) € C°[ty, t;], we consider the uniform grid
on the interval t € [0,1] with k = 20 and create an almost uniform grid Z,, by adding
or subtracting random numbers randi € [107°,107#] to each node t; of the uniform grid.
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0.0 0.5 1.0 1.5 2.0 25 3.0

Figure 3: The trajectory of v(t) = sin(t) with Area=0.2 on [0, rt].

5 ,
!
6 33 Y

T1213 141516 17

L L L L L
0 2 4 6 8 10

Figure 4: An unfinished movement.

Each of these almost uniform subintervals is then divided in half to create an almost uniform
grid J,, k = 40,80,.... Table 1 shows the corresponding numerical results compared to
the method in [9]. The numerical convergence order (NCO) is computed by a formula
from [9,13]. The boundary values of the integro quadratic spline Q(t) [9] are given by exact
values vy and v;. Our method approximates the first and second derivatives of the function
better than the method in [9]. Finally, we consider the convexity of the proposed integro
splines. In Fig. 5, the velocity function v(t) = 2 — 4/t(2—t) is approximated on 775 =
{0,0.05,0.1,0.4,0.7,1,1.3,1.6,1.9,1.95, 2}. The dotted line (a) represents the spline (2.2)
with the coefficients computed by solving the system equation, whereas the solid and the

Table 1: The numerical results for the function v(t) =0.9sin(nt)+0.76t, t €[0,1].

k 118 = villsox [NCO|11Q; = vill oo [NCO [ 15! = ¥/llso | NCO | 1Q} = ¥/llow & [NCO | IIS)” = v/'|l oo | NCO
20 | 7.18x107° | - |3.05x107% | - [ 4.16x1072 | - | 5.82x107% | - 1.69x107! -
40 | 2.28x107° [4.97| 1.90x107%7 |4.00| 2.64x107* |3.97| 1.45x107% [2.00| 2.14x1072 |2.97
80 | 1.16x1077 |4.29| 1.19x107°® [4.00| 1.66x107° [3.99| 3.63x10™* [2.00| 3.42x107% |2.64
160| 7.24x107° |3.99 | 7.43x107'° [4.00 | 1.04x107° |4.00| 9.08x107° [2.00| 8.56x10™* [1.99
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20
18
16
14

12

Figure 5: Convexity properties of proposed integro splines.

dashed lines (b) are the splines (2.2) and (3.6), respectively, with the coefficients given by
S., S{, 51{’ and @;. We note that the solid and dashed (blue online) lines are close to each
other, (b) is convex, but (a) is not.

6. Conclusion

We constructed integro cubic splines on non-uniform partitions such that the corre-
sponding local splines have good convexity and approximation properties. Numerical ex-
periments are consistent with the theoretical findings.
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Abstract. We propose new symbolic-numerical algorithms imple-
mented in Maple-Fortran environment for solving the self-adjoint
elliptic boundary-value problem in a d-dimensional polyhedral finite
domain, using the high-accuracy finite element method with multivari-
ate Lagrange elements in the simplexes. The high-order fully symmetric
PI-type Gaussian quadratures with positive weights and no points out-
side the simplex are calculated by means of the new symbolic-numerical
algorithms implemented in Maple. Quadrature rules up to order 8 on
the simplexes with dimension d = 3 — 6 are presented. We demonstrate
the efficiency of algorithms and programs by benchmark calculations of
a low part of spectra of exactly solvable Helmholtz problems for a cube
and a hypercube.

Keywords: Elliptic boundary-value problem - Finite element method
Multivariate simplex lagrange elements

High-order fully symmetric Gaussian quadratures

Helmholtz equation for cube and hypercube

1 Introduction

The progress of modern computing power offers more possibilities for setting and
numerical solution of multidimensional elliptic boundary-value problems (BVPs)
with high accuracy. 3D BVPs have wide applications in such areas as vibrating
membrane, electromagnetic radiation, motion of thermal neutrons in the reac-
tor, seismology, and acoustics, see, e.g., [4], while multidimensional BVPs have
applications in nuclear physics, see, e.g., [7]. For this purpose, novel numerical

© Springer Nature Switzerland AG 2018
V. P. Gerdt et al. (Eds.): CASC 2018, LNCS 11077, pp. 197-213, 2018.
https://doi.org/10.1007/978-3-319-99639-4_14
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methods of high accuracy order are being developed. When reducing the bound-
ary value problem to an algebraic one in the finite element method (FEM) of
the order p, one of the problems is the calculation of integrals on a finite element
(we consider only simplicial finite elements) containing the products of two basis
functions of Lagrange or Hermite interpolation polynomials of the order p by
the coefficients for the unknown functions [5,9]. There are three possible ways
to calculate the integrals:

(i) using analytical calculation, which is possible for a limited number of cases;
(ii) using quadrature formulas with products of two basic functions used as a
weight function;
(iii) using quadrature formulas with a single weight function.

It is well known [20] that as a result of applying the pth order FEM to the
solution of the discrete spectrum problem for the elliptic (Schrédinger) equation,
the eigenfunction and the eigenvalue are determined with an accuracy of the
order p+ 1 and 2p provided that all intermediate quantities are calculated with
sufficient accuracy. It follows that for the realization of the FEM of the order
p in the third case, the integrals must be computed at least with an accuracy
of the order 2p, depending on the problem considered. The most economical
calculation of such integrals is achieved using the quadratures of Gaussian type.
In the one-dimensional case, the nodes and the quadrature Gaussian weights
are expressed analytically; in the two-, three- and four-dimensional case, the
high-order quadrature formulas are determined numerically [2,6,8,10,17-19,21].
Note that for multidimensional integrals, numerous quadrature formulas of the
Newton—Cotes and third-order Gaussian type are known, too (see Ref. [1]).

The paper presents a new method for constructing fully symmetric multidi-
mensional Gaussian-type quadratures on a standard simplex. The main idea of
the method is replacing the coordinates of nodes with their symmetric combina-
tions obtained using the Vieta theorem, which simplifies the system of nonlinear
algebraic equations. The construction of the desired systems of equations is per-
formed analytically using an original algorithm implemented in Maple [13]. The
derived systems up to the sixth order are solved using the built-in procedure
PolynomialSystem, implementing the technique of Grobner bases, and the sys-
tems of higher order are solved using the developed symbolic-numerical algorithm
based on numerical methods, implemented in Maple-Fortran environment. We
demonstrate the efficiency of algorithms and programs by benchmark calcula-
tions of the lower part of spectra in exactly solvable Helmholtz problems for a
cube and a hypercube.

The paper is structured as follows. In Sects. 2 and 3, the FEM schemes and
algorithms for solving the d-dimensional BVP are presented. In Sect. 4, the algo-
rithms for constructing the d-dimensional fully symmetric Gaussian quadratures
are presented. In Sect. 5, the benchmark calculations of the exactly solvable
Helmholtz problems for the cube and hypercube are presented. In Conclusion,
we discuss the results and perspectives.
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2 Setting of the Problem

Consider a self-adjoint boundary-value problem for the elliptic differential equa-
tion of the second order:

a%+v<) E)@(Z):o. (1)

(- B = (- —

For the principal part coefficients of Eq. (1), the condition of uniform ellipticity
holds in the bounded domain z = (z1,...,24) € £2 of the Euclidean space R?,

i.e., the constants p > 0, v > 0 exist such that p&? < ijzl gi;(2)&&; < vE?,

£ = Z?Zl €2, V¢ € R. The left-hand side of this inequality expresses the
requirement of ellipticity, while the right-hand side expresses the boundedness of
the coefficients g;;(z). It is also assumed that go(2) > 0, gji(2) = gi;(2) and V (2)
are real-valued functions, continuous together with their generalized derivatives
to a given order in the domain z € 2 = 2 U 912 with the piecewise continuous
boundary S = 02, which provides the existence of nontrivial solutions obeying
the boundary conditions [5] of the first kind

?(z)|s =0, (2)
or the second kind
oB(z)| 0B(2) N, . 99(2)
onp Is 0, onp —Z;(n,ez)g”(z) 0z (3)

where %}f) is the derivative along the conformal direction, n is the outer
normal to the boundary of the domain S = 9f2, é; is the unit vector of z =
Z?:l é;2;, and (7, ;) is the scalar product in R

For a discrete spectrum problem, the functions @,,(z) from the Sobolev space
H32H(0), &(2) € H3Z'(2), corresponding to the real eigenvalues E: E; <

By, <...<E,, <...satisfy the conditions of normalization and orthogonality
(D (2)| Py (2)) = / dzgo(2)Pin (2) P (2) = Oy,  dz =dz1...dzq. (4)
I?;

The FEM solution of the boundary-value problems (1)—(4) is reduced to the
determination of stationary points of the variational functional [3,5]

5@y, By = /Q 290 (2)Bpn(2) (D — Ey)) 8(2) = (B, Bry),  (5)

where I1(®, F) is the symmetric quadratic functional

n@.r) = [ dzlzgw T G + ()P () - E)G)|

17=1
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3 FEM Calculation Scheme

In FEM, the domain 2 = 2;,(z) = UqQ:1 A,, specified as a polyhedral domain,
is covered with finite elements, in the present case, the simplexes A, with d + 1

vertices 2; = (Zi1,2i2,...,%id), © = 0,...,d. Each edge of the simplex A, is
divided into p equal parts, and the families of parallel hyperplanes H(i, k) are
drawn, numbered with the integers £ = 0, ..., p, starting from the corresponding

face (see also [5]). The equation of the hyperplane is H(i, k): H(i;z) — k/p =0,
where H (i; z) is a linear function of z.
The node points of hyperplanes crossing A, are enumerated with the sets

of integers [ng,...,nq4|, n; >0, ng + ...+ ng = p, where n;, i = 0,1,...,d are
the numbers of hyperplanes, parallel to the simplex face, not containing the ith
vertex Z; = (Z;1,...2iq). The coordinates &. = (§1,...,&q) of the node point

A, € A, are calculated using the formula

no N n

. ~ ~ nq
&1y &rd) = (201,-~-720d)? + (211, .-+, Zld)? + .o+ Cats s Zad) —

5 (6

from the coordinates of the vertices 2; = (2;1,...,2;4). Then the Lagrange inter-
polation polynomials (LIP) ¢P(z) are equal to one at the point A, with the
coordinates &, = (&1,...,&r4), characterized by the numbers [ng,n1,...,n4],
and equal to zero at the remaining points &/, i.e., ¢P(&) = d,,s, have the
form

TN H(isz) —nl/p
H H 57“ —n’/p <7)

20’

As shape functions in the simplex A, we use the multivariate Lagrange inter-
polation polynomials 7' (z) of the order p that satisfy the condition ¢} (z1y/, z2y)
= 0y, 1.e., equal 1 at one of the points A; and zero at the other points. In this
method, the piecewise polynomial functions N/ (z) in the domain {2 are con-
structed by joining the shape functions ¢7(z) in the simplex Ay:

NP (z) ={¢](2), A1 € Ag;0, A1 & Ay}

and possess the following properties: the functions N (z) are continuous in the
domain £2; the functions Ny (z) equal 1 at one of the points A; and zero at the
rest of the points; N/’ (z) = §;r in the entire domain (2. Here [ takes the values
l=1,...,N.

The functions N} (z) form a basis in the space of polynomials of the pth order.
Now, the function @(z) € H!(£2) is approximated by a finite sum of piecewise
basis functions N} (z):

P"(z) = ) PINI(2). (8)
=1
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Table 1. The orbits and their number of permutations for d = 3,4, 5, 6.

d=3 d=4 d=5 d=26

Orbits | Perm. | Orbits | Perm. | Orbits | Perm. | Orbits |Perm.|Orbits|Perm. | Orbits |Perm.
S4 1 S5 1 S6 1 S3111 | 120 S7 1 Sa111 210
S31 4 Sa1 5 |Ss51 6 So211 |180 | Se61 7 | S3211 420

Sa9o 6 S3o 10 S40 15 S21111 1360 Sso 21 S29291 630
So11 |12 S311 20 |S33 20 S111111 720 | S43 35 | S31111 840

S1111 |24 S221 30  |Ss411 |30 Ss11 42 | S22111 1260
S2111 | 60 | S321 |60 Sa21 105 | S211111 | 2520
S11111 (120 | S222 |90 S331 (140 | S1111111 5040

S320 210

After substituting expansion (8) into the variational functional (5) and minimiz-
ing it [3,20], we obtain the generalized eigenvalue problem

APP" = "BPo". (9)

Here AP is the symmetric stiffness matrix; B? is the symmetric positive definite
mass matrix; " is the vector approximating the solution on the finite-element
grid; and £” is the corresponding eigenvalue. The matrices AP and BP have the
form:

AP = {afl’}l]y’:la B = {bfl'}lzy’zla (10)

where the matrix elements a}, and b}, are calculated for simplex elements as

d P(2) 0l (2
=3 [ a2 b [ @etedeve e

ij=1 q

by = /A 90(2)] ()7 (2)d. (11)

q

The economical implementation of FEM is the following.

The calculations, including those of FEM integrals for mass and stiffness
matrices at each subdomain A, are performed in the local (reference) system of
coordinates z, in which the coordinates of the simplex vertices are the following:
z; = (Zj1,..-,25d) Tjk =0k, J=0,...,d, k=1,....d.

Let us construct the Lagrange interpolation polynomial (LIP) on an arbitrary
d-dimensional simplex A, with vertices 2; = (21, Zi2,. .., Zia), ¢ = 0,...,d. For
this purpose, we introduce the local system of coordinates x = (x1, z2,...,2q) €
R4, in which the coordinates of the simplex vertices are Z;. The relation between
the coordinates is given by the formula:

d
Zi :7:'02—{— E Jijxja J’L’j :2‘77:_207:7 1= 1,...,d. (12)
j=1
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Table 2. Quadrature rule on tetrahedra.

Orbit | Weight

Abscissas

14-points 4-order rule

S31

0.0801186758957551214557967806191

0.0963721076152827180679867982109

S31

0.1243674424942431317471251193937

0.3123064218132941261147265437508

S22

0.0303425877400011645313853999915

0.0274707886853344957750132954191

14-points 5-order rule

S31

0.0734930431163619495437102054863

0.0927352503108912264023239137370

S31

0.1126879257180158507991856523333

0.3108859192633006097973457337635

S22

0.0425460207770814664380694281203

0.0455037041256496494918805262793

24-points 6-order rule

S31

0.0399227502581674920996906275575

0.2146028712591520292888392193863

S31

0.0100772110553206429480132374459

0.0406739585346113531155794489564

S31

0.0553571815436547220951532778537

0.3223378901422755103439944707625

Sa11

0.0482142857142857142857142857143

0.0636610018750175252992355276057
0.6030056647916491413674311390609

35-points 7-order rule

Sy

0.0954852894641308488605784361172

0.2500000000000000000000000000000

S31

0.0423295812099670290762861707986

0.3157011497782027994234299995933

S22

0.0318969278328575799342748240829

0.0504898225983963687630538229866

Sa11

0.0372071307283346213696155611915

0.1888338310260010477364311038546
0.5751716375870000234832415770223

Sa11

0.0081107708299033415661034334911

0.0212654725414832459888361014998
0.8108302410985485611181053798482

46-points 8-order rule

S31

0.0063972777406656176515049738764

0.0396757518582111225277078936298

S31

0.0401906214382288067038698161802

0.3144877686588789672386516888007

S31

0.0243081692121760770795396363192

0.1019873469010702748038937565346

S31

0.0548586277637264928464254253584

0.1842037697228154771186065671874

S22

0.0357196747563309013579348149829

0.0634363951662790318385035375295

Sa11

0.0071831862652404057248973769332

0.0216901288123494021982001218658
0.7199316530057482532021892796203

Sa11

0.0163720776383284788356885983306

0.2044800362678728018101543629799
0.5805775568740886759781950895673

The inverse transformation and the relation between the differentiation operators

are given by the formulas

Xi

= > (T V)52 — 205),

d

j=1

d a 9 d
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Table 3. Quadrature rule on d = 4 dimensional simplex.

Orbit | Weight

Abscissas

20-points 4-order rule

Sa1

0.0379539224206539610831511760634

0.0784224645320084412701860095372

Sa1

0.0681384495140965073072374189421

0.2449925002516506829747267241998

S32

0.0469538140326247658048057024973

0.0657807054017604429326659923627

30-points 5-order rule

Sa1

0.0492516801753157409383956672833

0.0853466308308594082516329452526

Sa1

0.0325114606587393649369493738878

0.2369600116614607056460832163398

S32

0.0175327109958004508766635908927

0.0412980141318484010482052159450

S32

0.0415857185871719961856638885218

0.2997443384790352862963354895649

56-points 6-order rule

Ss

0.0732792367435547721884408088550

0.2000000000000000000000000000000

Sa1

0.0047429121713183739117905941798

0.0417033817484816144703679735243

S32

0.0371671124025330069869448829255

0.2956227971470980491911963343462

S311

0.0133362480184817717166547744056

0.1543949248731168427369921195673
0.5227506462276968325151584695712

S311

0.0132305059002443927025030951440

0.0478156751378274921515148624255
0.2819739419928806028 716278777811

76-points 7-order rule

Ss

0.0282727667597935101461654674137

0.2000000000000000000000000000000

Sa1

0.0171637920155537955591265968365

0.2494020893093779695674000557470

S32

0.0084262904177368737487641566458

0.0390279956601069690478223468028

S32

0.0151633627560453145809862914879

0.1283114044638121921594658569279

S311

0.0041099348414815560204478025486

0.0338474709865642635279969618386
0.7462624286813390611020624803775

S221

0.0189271014864994836117247005365

0.0448337964557961849763900084527
0.2098710857162324764262981778162

110-points 8-order rule

Sa1

0.0209889631062033488284471858741

0.1064160632601420588468274348524

Sa1

0.0025569304299619087111133529054

0.0405432824126613113549340882657

S32

0.0153364140237452308225281532013

0.0553205204859791157778648564000

S32

0.0143413703554045577679712361587

0.1329849247207488765271172398305

S32

0.0219839063571691797013874119590

0.2921649623679039933512390863408

S311

0.0036998351176104420717284969383

0.0333398788668747287190327986033
0.6960284779140254845117282473257

S311

0.0102875153954967332446050836803

0.1749055465990825034189472406388
0.4713583394803434080155451322627

S221

0.0028635538231280174352219226847

0.2139955562978852147651302856947
0.0055794471455235244097015787040

203
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Table 4. Quadrature rule on d = 5 dimensional simplex.

Orbit | Weight

Abscissas

27-points 4-order rule

Se

0.2380952380952380952380952380952

0.1666666666666666666666666666667

Ss1

0.0476190476190476190476190476190

0.0833333333333333333333333333333

S33

0.0238095238095238095238095238095

0.3110042339640731077939538617922

37-points 5-order rule

Se

0.1537202203084293617727126367247

0.1666666666666666666666666666667

Ss1

0.0289106224493151615615928162885

0.0750000000000000000000000000000

S42

0.0272301053298578547025239158396

0.0620931177937680448262436473512

Sa2

0.0176242976698541232213247818634

0.2494113069849930171206590075161

102-points 6-order rule

Ss1

0.0220609777699918416385171809216

0.0936784796657907179507883184494

Ss1

0.0010288939840293747752001192602

0.0270566434340766625713558698570

S42

0.0156264172618719457418380080610

0.0653950986037339179722692404805

Sa2

0.0278282494445825546266341924031

0.2298844181626658901051213339390

S321

0.0034940128146509199331768865324

0.0182868036924305667708203585711
0.1963426392615138866458359282858

137-points 7-order rule

Ss1

0.0251079912995851246690568379932

0.1962505998027202386302784835916

Ss1

0.0268181773072546325688248594140

0.1073064529494792948889112833415

S

0.0088856106397381008037487732556

0.0499693465734168548516130660759

S33

0.0155965105537609568596496409074

0.2812294050576655725449341659515

Sa11

0.0013215130252633881273492640567

0.0287356582492413683812555969369
0.7243025794534749187969716773294

S321

0.0033930537821628193917167912812

0.1573270862326151676898601262299
0.0036548286115748769147071291765

257-points 8-order rule

Ss1

0.0176303711895221798359615170829

0.1062079269440531427851821818230

Ss1

0.0022261212103870366035563829745

0.0445128753938546747539305403018

S42

0.0166747305797216127029493671085

0.2215271654487921945556436076078

S33

0.0039660204626209654516270279365

0.0287362439702382298273521354305

Sa11

0.0013712761289024193505102030670

0.0302807316628161184245512327246
0.5742625240747101119061964222732

S321

0.0009261971752463936292941257741

0.0178653742410041824343316617132
0.1599485035546596050768099856676

S321

0.0048311921097760693226621205033

0.0971175464224689537586197747871
0.3509135920039025566598219642999

S321

0.0027473006113980140692238444274

0.1542598417836536904457879818959
0.0175301902661063495789625995714
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Table 5. Quadrature rule on d = 6 dimensional simplex.

Orbit | Weight

Abscissas

43-points 4-order rule

S

0.1668996242406426424065553487802

0.1428571428571428571428571428571

Se1

0.0271661981514270076903673620086

0.0712015434701090173255254362504

Sa3

0.0183696282485533801074535176331

0.0378762710421960021962053657298

64-points 5-order rule

S

0.1055608940320069322326417879346

0.1428571428571428571428571428571

Se1

0.0242990419532018650013794612051

0.0715539250843990305857473101707

Ss2

0.0117134616879203157617441588591

0.0506772832103077178123184150643

S43

0.0136675176242643823360307042168

0.2304358521244036512024566237956

175-points 6-order rule

Se1

0.0004610493156525528548408228337

0.0250990960487081544700908516534

Se1

0.0130199167458605046501306895616

0.1640882485030238802990581503886

Ss2

0.0020306497109021799567911952305

0.0278440785001665193354091212251

S43

0.0162220926263431272900952737070

0.0542711738847223476721544566326

S421

0.0028115843020805082211357117490

0.1203196589728741910526848418155
0.0037549817118180216976885119286

266-points 7-order rule

Se1

0.0103583726453788825261551030659

0.1655537069170340713573624387430

Sr2

0.0127946542771734405339991326892

0.0800416917413849453828158790868

Ss2

0.0038665797691560684680540249746

0.0462060207372654835707639356206

Sa3

0.0068482273738159415062980403942

0.2251626772370571673652419443913

Sa3

0.0013006546667652760792540506406

0.0140208383611713481747343760562

Ss11

0.0005321899098570485728489000218

0.0246678063639990490447074776734
0.1759636130065151239491183217936

Sa21

0.0025718345607151378830459140997

0.1242831811867119456481842408470
0.0063723131014287473559192490677

553-points 8-order rule

Se1

0.0119576998439189095322140668380

0.1646768753323421340942870425551

Se1

0.0170033855208889021739988777538

0.1010702610627718250051913258275

Se1

0.0015763271020889357220309420300

0.0445013301458845571180677283528

Sa3

0.0029960134851163901478666677698

0.0444259533505434743654069329655

Sa3

0.0057810264432097073309950803359

0.2211051271607452660739567583653

Ss11

0.0007096981072933306194796057518

0.0303842211182356803799849235650
0.25759784196158417691648228 70809

Sa21

0.0003172772160146728270743668040

0.0126686383758556644736172343255
0.2101770124793451029895811597503

Sa21

0.0015276586289853906949163952851

0.1232675348992300327954722629436
0.0050316009864769548591929730662

S322

0.0012167434809951561924521816620

0.0955868297374816410778226310866
0.3377885686906383657970155568362

205
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The integrals that enter the variational functional (5) on the domain §2;,(z) =

UqQ:1 Ay, are expressed via the integrals, calculated on the element A,, and
recalculated to the local coordinates x on the element A,

/ dzgo(Z)wi’(Z)wf/(Z)V(Z)=J/ dzgo(z(z)) e} (x)¢y (2)V (2(2)), (13)
A A

q

Ok (2) 9py ()

q

0ot () O (x)
SIS i T R Tt

t1,t2=1

where J = det J>0 is the determinant of the matrix .J from Eq. (12), J; ! =

i - s182;t1t2
(J_l)tlsl (J_l)tQSQ, dr = dxq...dxy.

In the local coordinates, the LIP P(z) is equal to one at the node point &,
characterized by the numbers [ng,ni,...,nq], and zero at the remaining node
points £, i.e., ¢,.(&.) = d,, are determined by Eq. (7) at H(0;z) =1—21—...—
xq, H(i;2) =z, i =1,...,d:

d n;—1 o—1
HH xz—nz/p H1—931—---—33d—n0/p (14)
zln—OnZ/p_n/pn—O no/p_no/p

Integrals (13) are evaluated using the Gaussian quadrature of the order 2p.
Let &,, and ®,,(z) be exact solutions of Eq.(9) and &, and &% be the
corresponding numerical solutions. Then the following estimations are valid [20]

lem — el < cilemh®, | Pm(2) = P llo < co B[P, (15)

where ||a(2)||3 = (a(2)]a(z)), h is the maximal step of the finite-element grid, m
is the number of the corresponding solution, and the positive constants c¢; and
c2 do not depend on the step h.

To solve the generalized eigenvalue problem (9), we choose the subspace iter-
ation method [3,20] elaborated by Bathe [3] for the solution of large symmetric
banded-matrix eigenvalue problems. This method uses the skyline storage mode
which stores the components of the matrix column vectors within the banded
region of the matrix, and is ideally suited for banded finite-element matrices.

4 Construction of the d-dimensional Quadrature
Formulas

Let us construct the d-dimensional p-ordered quadrature formula

/sz \A]ij (z5), = (21,...,2d4), dz=dz ...dzq, (16)
A

q
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for integration over the d-dimensional simplex A, with vertices 2; = (2;1, Zi2, . . .,
Zid), ¢ = 0,..., d, which is exact for all polynomials of the variables z1,..., 24
of degree not exceeding p, where n; is the number of nodes that is determined
during the calculation process. In Eq. (16), w;, j = 1,...,n; are the weights and
zj = (zj1, 22, - - ., #j4) are the coordinates of nodes. |4,| denotes the volume of
A,. For each node z;, instead of sets of d coordinates we use the sets of d + 1
barycentric coordinates (BC) (zjo,zj1,. .., % d):

Zj :xj020+-~-+xjd73d; Jljo—{—...—}—xjd: 1. (17)

For this purpose, we introduce the local coordinate system = = (x1,x2,...,zq)
and (12). Therefore, without loss of generality, we construct the d-dimensional
p-ordered quadrature formula (16) on the standard simplex A with vertices
.fj = (i’jl,...,.fjd), i’jk = 5jk:7 j = O,...,d, k = 1,...,d, which is exact for
all polynomials of the variables x1,...,z4 of degree not exceeding p:

/A dxV (z = Zw] (0, Tjd)- (18)

Since the following formula is valid for all permutations (lo, .. .,lq) of (ko,. .., kq):

da:a:lf...xldd(l—asl—...—azd)lo: =0 _
/A (d+zfl k)'

we consider the fully symmetric Gaussian quadratures

/ dIL'V(.’,U d' Zw] Z V(-’E]O(],lel,---,xjdd); (19)

7]d
where the internal summation by jg,...,jq is carried out over the different per-
mutations of (xo, %1, ...,x;q). Table 1 presents the orbits and the corresponding

number of different permutations for d = 3,4, 5,6. Here, for example, the orbit
S331 at d = 6 contains BC (a, o, o, 3,8, 6,7), « Z B # v, a #v,3a+30+v =1
and their different 140 permutations.

Substituting a monomial of the order not exceeding p in Eq.(19) instead
of V(z), we arrive at a system of nonlinear algebraic equations, that using the
Vieta theorem reduces to the form:

1 a

/A desfsi x ... x sl = a Y wi Qs x o x sy, (20)
ot

200 + 3ls + ...+ (d + 1)ld_|_1 <p, (21)

where

d d
Z TiLjy, «-vy  Sd4+1 = Hl’i, (22)
i=0

i=0,j#i
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Sji, © = 2,...,d+1, are their values in the BC (zjo, 21, ..., zq), and @Q; is the
number of different permutation of the BC. As in Ref. [15], instead of Eq. (22),
we can use

sp=> al, j=2...,d+1 (23)

The number of all [; > 0 solutions of Eq.(21) provides the minimal num-
ber of independent nonlinear equations for the quadrature formula of the order
p. It means that we can obtain a set of independent polynomials by adding
new polynomials when increasing the order p. Below the first few independent
polynomials of the order not exceeding p < 6 for d > 5 are presented:

Vi(z) = sq, for p =1,
‘/2(3:) = 82, fOI‘pZQ,

Vi(z) = s3, for p = 3, 04

Vi(z) = 83, Vs(z) = s4, for p =4, (24)
Ve(z) = s283, V7 (x) = ss, for p =5,

Vi(z) = 83, Vo(z) = s%, Vio(z) = s284, Vi1(x) = sg, for p = 6.

We consider fully symmetric rules with positive weights, and no points are
outside the simplex (the so-called PI-type).

The n,-points p-order quadrature rules are constructed with Algorithm 1 [21]
implemented by us in Maple and Fortran:

— for each decomposition n, do

repeat
1. Randomly choose an initial guess for the unknowns n;.
2. Find a least square solution to Egs. (20), (21) using a quasi-Newton
algorithm.
3. If a Pl-type solution is found satisfying Eqgs. (20), (21), with sufficient
accuracy, go to Step 4.
until maximum number of initial guesses tried.
— end for
— Stop.
— 4. Minimize the nonlinear equation for unknowns n; using the Levenberg—
Marquardt algorithm with high accuracy [12,14].

The Levenberg—Marquardt Algorithm 2:
Let f(x) be twice differentiable with respect to the variable x = (x1,...,z,).
We consider the minimization
i . 25
Jnin f(x) (25)

1. Start with an initial value xq, in S, an initial damping parameter \g, and a
scaling parameter p. For k > 0 do the following;:
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2. Determine a trial iterate y, using
y = xi, — (Hy(xx) + A diag(Hy(xx))) ™" Vf(xx), (26)

with A = )\kp_l.

3. If f(y) < f(xx), where y is determined in Step 2, then set x;4; = y and
Mitr1 = Arp~ L. Return to Step 2, replace k with k£ + 1, and compute a new
trial iterate.

4. If f(y) > f(xk) in Step 3, determine a new trial iterate, y, using (26) with
A= A

5. If f(y) < f(xx), where y is determined in Step 4, then set x;4+; = y and
Ak+1 = Ag. Return to Step 2, replace k with k + 1, and compute a new trial
iterate.

6. If f(y) > f(xx) in Step 5, then determine the smallest value of m so that when
a trial iterate y is computed using (26) with A = A\pp™, then f(y) < f(xg).
Set xp11 =y and A1 = Agp™. Return to Step 2, replace k with k4 1, and
compute a new trial iterate.

7. Terminate the algorithm when ||V f(xx)| < €, where € is the specified toler-
ance.

In the above Algorithm 2, V f(x), Hf(x) are the gradient vector and the Hes-
sian matrix functions of f(x), respectively. diag(H¢(x)) is the diagonal matrix
of the Hessian matrix function Hy(x).

The weights (W) and the BC of Pl-type rules of order p are presented in
Tables 2, 3, 4 and 5. Here, for example, for the orbit Sy2; at d = 6 contains the
BC (o, , a0, 8, 8,7), @ # B # 7, a # «v and their different 105 permutations.
We present « in the first line and S in the second line, since v is expressed in
terms of a, 8, i.e., v = 1 — 4a — 23. The rules of the fifth and sixth order on
tetrahedra coincide with the results of Ref. [2]. We believe that at least some of
the rules presented in this paper are new. But we can not guarantee that the
presented numbers of points of high-order quadrature rules are minimal. Note
that up to the order p = 6 W and BC were calculated using Maple with 32
significant digits. For p > 6, W and BC were calculated using Fortran with 10
significant digits (the first three steps of Algorithm 1). These calculations were
performed using the Central Information and Computer Complex, and HybriLLIT
heterogeneous computing cluster at JINR. Starting from the approximate values
found with the Fortran code, W and BC were then calculated in Maple with 32
significant digits.

5 BVP for Helmholtz Equation in a d-dimensional
Hypercube

For benchmark calculations, we use the BVP for the Helmholtz equation (HEQ)
with the boundary condition (II) in a d-dimensional hypercube with the edge
length 7. Since the variables are separated, the eigenvalues E,, = E,,, . m, are
sums of squared integers, E,, = Ep,.  m, = M3 + ... +m3 mp = 0,1,...,
k=1,...,d.
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Fig. 1. (a) Division of a 3D cube into 3! = 6 equal tetrahedrons (T1,...,T6). (b)
The error Adg(z1, 22, 23) = |PE (21, 22, 23) — Ps (21, 22, 23)| for the eighth eigenfunction
DL (21, 22, 23) at fixed 23 = 7/9, calculated using FEM with third-order LIPs versus
the exact eigenfunction ®g(z1, 22, 23) corresponding to the eigenvalue Fs = 3. Here the
cube is divided into 2% cubes, each comprised of 6 tetrahedrons. The isolines marked 1
correspond to the values of Adg(z1,22,23) = APg** /10, the isolines marked 2 corre-
spond to the values of APg(z1, 22, 2z3) = 2APE**/10,. .., at APg** ~ 0.018.

Assertion (see also [16]). The hypercube is divided into d! equal simplices. The
vertices of each simplex are located on broken lines composed of d mutually
perpendicular edges, and the extreme vertices of all polygons are located on one
of the diagonals of the hypercube (for d = 3 see Fig. 1a).

Algorithm 3.

Input. A single d-dimensional hypercube with vertices the coordinates of
which are either 0 or 1 in the Euclidean space R%. The chosen diagonal of the
hypercube connects the vertices with the coordinates (0,...,0) and (1,...,1).

Output. zl(;) = (2181), . z,(ﬁg), the coordinates of the ith simplex.

Local. The coordinates of the vertices of the polygonal line are z; = (zg1, - .
de), kIO,...,d.

1. For all i = (iy,...,44), the permutations of the numbers (1,...,d):

1.1. Forall k=0,...,dand s = 1,....d: 24 = {1,i, < k,;0,i5 > k}

1.2. If det(zl(czs))gs:1 = —1 then z&) VRS 2152_1.

3D HEQ for the cube. In Fig. 1b, we show the error A®g(z1, 29, 2z3) for the
eighth eigenfunction @é‘(zl, 29, 23) at fixed z3 = 7/9, calculated using FEM with
third-order LIPs versus the exact eigenfunction ®g(z1, 22, z3) corresponding to
the eigenvalue Eg = 3. In Fig. 2a, we also show the maximal error APg*** for
the exact eighth eigenfunction @g(z1, 22, 2z3) calculated using FEM with LIPs of
the orders p = 3,4,5 versus the number N of piecewise basis functions N/ ()
in the expansion (8). In Fig.2b, we show the error of eigenvalues of the 3D
BVP for the HEQ at d = 3 with the boundary condition (II) using the FEM
scheme with 3D LIP of the order p = 6. As seen from Fig. 2, the errors of the
eigenfunctions and eigenvalues lie on parallel lines in the double logarithmic scale

*



Algorithms for Solving Elliptic Boundary-Value Problems 211

0.1: : 'Y 34 %g g&§°‘é
0.1+ 1 1 0g° o
. 1E-4 4 | T : i ..;
1 e o°
1 ° < e b'!
. 1E-7 l ISR
S 0.01- w* : |
< . < 1
1E-10 T
1 °
1
1E-134
1E-34 1
100 \ 1000 1 5 ¢ 10 20
a) b)

Fig.2. (a) The maximal error APg'™ = max,, € (0,7),22 € (0,7),23 € (0,7)]
P (21, 22, 23) — Ps(21, 22, 23)| for the exact eighth eigenfunction $g(z1, 22, 23) calcu-
lated using FEM with LIPs of the orders p = 3,4,5 versus the number N of piecewise
basis functions N7 (z) in the expansion (8). (b)The error AE,, = EJ}, — E,, calculated
using FEM with sixth-order LIPs versus the exact eigenvalue F,,. Squares: the cube
divided into 6 tetrahedrons. Circles: the cube divided into 2° cubes, each comprised
of 6 tetrahedrons. Solid circles: the cube divided into 4% cubes, each comprised of 6
tetrahedrons.

Table 6. The lower part of the exact spectrum FE,, and the calculated spectrum E”,
for the 6D hypercube.

E..| El,

0 |0.183360983479286 e—10

1 |1.00023, 1.00034, 1.00034, 1.00034, 1.00034, 1.00034

2 | 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760, 2.04760,

2.04760, 2.07391, 2.08478, 2.08478, 2.08478, 2.08478, 2.08478

3 13.15060, 3.15196, 3.15196, 3.15196, 3.15196, 3.15196, 3.15780, 3.15780,
3.15780, 3.15780, 3.15780, 3.16319, 3.16319, 3.16319, 3.16319, 3.16319,
3.16319, 3.16319, 3.16319, 3.16319

which agrees with the theoretical error estimates (15) for the eigenfunctions and
eigenvalues depending on the maximal size of the finite element. For a cube with
the edge 7 divided into 43 cubes, each of them comprising 6 tetrahedrons, the
matrices A and B had the dimension 15625 x 15625. The matrices A and B were
calculated in two ways: analytically or with Gaussian quadratures from Sect. 4
using Maple 2015, 2x 8-core Xeon E5-2667 v2 3.3 GHz, 512 GB RAM, GPU Tesla
2075. For the considered task, the values of matrix elements agree with Gaussian
quadratures up to the order 10 with given accuracy. The generalized algebraic
eigenvalue problem (9) was solved during 20 min using Intel Fortran.

6D HEQ for the hypercube. We solved HEQ at d = 6 with the boundary
condition (II) using FEM scheme with 6D LIP of the order p = 3. The 6D
hypercube having the edge m was divided into n = d! = 6! = 720 simplexes
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(the size of the finite element being equal to 7). On each of them Nj(p) =
(p+d)!/(d!p!) = 84 third-order LIPs were used. The matrices A and B had the
dimension 4096 x 4096. The lower part of the spectrum FE,, is shown in Table 6.
The errors of the second, the third, and the fourth degenerate eigenvalue are
equal to 0.0003, 0.05, and 0.15, respectively. Note that applying the third-order
scheme for solving the BVPs of smaller dimension d, we obtained errors of the
same order. The calculation time was 9234.46 s using Maple 2015.

6 Conclusion

We have elaborated new calculation schemes, algorithms, and programs for
solving the multidimensional elliptic BVP using the high-accuracy FEM with
simplex elements. The elaborated symbolic-numerical algorithms and programs
implemented in Maple-Fortran environment calculate multivariate finite ele-
ments in the simplex and the fully symmetric PI Gaussian quadrature rules.
We demonstrated the efficiency of the proposed finite element schemes, algo-
rithms, and codes by benchmark calculations of BVPs for Helmholtz equation
of cube and hypercube. The developed approach is aimed at calculations of the
spectral characteristics of nuclei models and electromagnetic transitions [7,11].
This will be done in our next publications.
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Kinematically complete experimental study
of Compton scattering at helium atoms near

the threshold

Max Kircher
Nicolas Eicke*, Jonas Rist', Sebastian Eckart

Compton scattering is one of the fundamental interaction
processes of light with matter. When discovered’, it was
described as a billiard-type collision of a photon ‘kicking' a
quasi-free electron. With decreasing photon energy, the maxi-
mum possible momentum transfer becomes so small that the
corresponding energy falls below the binding energy of the
electron. In this regime, ionization by Compton scattering
becomes an intriguing quantum phenomenon. Here, we report
on a kinematically complete experiment studying Compton
scattering off helium atoms in that regime. We determine the
momentum correlations of the electron, the recoiling ion and
the scattered photon in a coincidence experiment based on
cold target recoil ion momentum spectroscopy, finding that
electrons are not only emitted in the direction of the momen-
tum transfer, but that there is a second peak of ejection to the
backward direction. This finding links Compton scattering to
processes such as ionization by ultrashort optical pulses?, elec-
tron impact ionization®*#, ion impact ionization>¢ and neutron
scattering’, where similar momentum patterns occur.

Doubts about energy conservation in Compton scattering at the
single-event level motivated the invention, by Bothe and Geiger®,
of coincidence measurement techniques. This historic experiment
settled the dispute about the validity of conservation laws in quan-
tum physics by showing that, for each scattered photon, there is
an electron ejected in coincidence. Surprisingly, however, even 95
years after this pioneering work, coincidence experiments on the
Compton effect are extremely scarce and are restricted to solid-
state systems™'’. To a large extent, this lack of detailed experiments
left further progress in the field of Compton scattering to theory.
Due to missing experimental techniques, much of the potential of
using Compton scattering as a tool in molecular physics remained
untapped''. The small cross-section of 10 cm? (six orders of mag-
nitude below typical photoabsorption cross-sections at the respec-
tive thresholds), together with the small collection solid angle of
typical photon detectors, has so far prohibited coincidence experi-
ments on free atoms and molecules. In the present work, we have
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solved this problem by using the highly efficient cold target recoil
ion momentum spectroscopy (COLTRIMS) technique'” to detect
the electron and ion momentum in coincidence. The He* ion and
electrons with an energy smaller than 25eV are detected with 4x
collection solid angle. The momentum vector of the scattered pho-
ton can be obtained using momentum conservation, thereby cir-
cumventing the need for a photon detector. This allows us to obtain
a kinematically complete dataset of ionization by Compton scatter-
ing of atoms, addressing the intriguing low-energy, near-threshold
regime. It has often been pointed out in the theoretical literature
that such complete measurements of the process—as opposed to
detection of the emitted electron or scattered photon only—are the
essential key to sensitive testing of theories'” as well as allowing for
a clean physics interpretation of the results'“.

For the case of Compton scattering at a quasi-free electron, the
angular distribution of the scattered photon is given by the Thomson
cross-section (Fig. 1a). Binding of the electron modifies the binary
scattering scenario by adding the ion as a third particle. The often
invoked impulse approximation accounts for one of the effects of
that binding, namely the electron’s initial momentum distribution.
According to this approximation, the initial electron momentum
is added to the momentum balance, while the binding energy is
neglected. In this model, the ion momentum is defined such that it
compensates only for the electron’s initial momentum. The impulse
approximation works well when the binding energy is negligible
compared to the energy of the electron carrying the momentum Q
transferred by the photon. The maximum value of Q is reached for
photon backscattering, and is twice the photon momentum E,/c,
where E, is the incoming photon energy. For helium with a bind-
ing energy of 24.6¢eV, this gives a threshold of E, ~2.5keV, below
which photon backscattering at an electron at rest does not provide
enough energy to overcome the ionization threshold. In the present
experiment, we use a photon energy of E, =2.1keV, well below that
threshold. Accordingly, the cross-section for ionization by Compton
scattering has dropped to ~20% of its maximum value of ~10~**cm?
(ref. °). As expected, we observe that the photon scattering angular
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Fig. 1| Scheme of ionization by Compton scattering at hv = 2.1keV.

a, The wavy lines indicate the incoming and outgoing photon, and the
purple arrow depicts the momentum vector of the emitted electron.

The dashed line shows the Thomson cross-section, that is, the angular
distribution of a photon scattering at a free electron. Black dots show the
experimental photon angular distribution for ionization of He by Compton
scattering, integrated over all electron emission angles and energies
below 25eV. The photon momenta are determined using the electron

and ion momenta, as well as momentum conservation. The statistical
error is smaller than the dot size. The dash-dotted line shows the A?
approximation for all electron energies and the solid red line shows the A?
approximation for electron energies below 25eV. The calculations were
done using Approach | (see Methods). The solid and dash-dotted lines
are multiplied by a factor of 1.9. b, Momentum distribution of electrons
emitted by Compton scattering of 2.1keV photons at He. The coordinate
frame is the same as in a: the scattering plane is defined by the incoming
(horizontal) and scattered photon (upper half plane); that is, p; is the
electron momentum component in the k, direction and p, is the component
perpendicular to k; within the scattering plane. The momentum transfer
points to the forward lower half plane. The data are integrated over the
out-of-plane electron momentum components. ¢, He* ion momentum
distribution for the same conditions as in b. See main text for an
explanation of the feature R.

distribution differs significantly from the Thomson cross-section
(Fig. 1a). The most striking difference is that all forward angles of
photon emission are suppressed and it is almost only backscattered
photons that lead to ionization. This measured cross-section shows
excellent agreement with our theoretical model, which is described
in detail in the Methods.

What is the mechanism facilitating ionization at these low photon
energies and small momentum transfers? Our coincidence experi-
ment can answer this question by providing the momentum vectors
of all particles, that is, the incoming (k,) and outgoing (k,) photon,
electron (p,) and ion (p,,,) momentum vectors for each individual
Compton ionization event. This event-by-event momentum correla-
tion gives access to the various particles’ momentum distributions
in the intrinsic coordinate frame of the process, which is a plane
spanned by the wavevectors of the incoming and scattered photon

NATURE PHYSICS | VOL 16 | JULY 2020 | 756-760 | www.nature.com/naturephysics

(Fig. 1). This plane also contains the momentum transfer vector
Q=k, —k,. In Fig. 1b,c, by definition, the photon is scattered to the
upper half plane and the momentum transfer Q (that is, the ‘kick’ by
the photon) points forward and into the lower half plane. The elec-
tron momentum distribution visualized in this intrinsic coordinate
frame shows two distinct islands, one in the direction of the momen-
tum transfer and a second smaller one to the backward direction, that
is, opposite to the momentum transfer direction. These two maxima
are separated by a minimum. The He* ions (Fig. 1¢) are also emitted
to the forward direction. In addition to a main island close to the ori-
gin, ions are also emitted strongly in the forward direction, towards
the region indicated by R (Recoil) in Fig. 1c. This ion momentum
distribution shows strikingly that in the below-threshold regime, the
situation is very different from the quasi-free electron scattering con-
sidered in the standard high-energy Compton process. In the latter
case, the ion is only a passive spectator to the photon—-electron inter-
action and, consequently, the ion momenta are centred at the origin
of the coordinate frame used in Fig. 1b,c'*'%.

The observed bimodal electron momentum distribution
becomes even clearer when we examine a subset of the data for
which the photon is scattered to a certain direction (Fig. 2). This
shows that the momentum distribution follows the direction of
momentum transfer and the nodal plane is perpendicular to Q.
Such bimodal distributions are known from different contexts. For
example, for ionization by electron impact (e, 2e)* and ion impact’,
the forward lobe has been termed a binary lobe, for obvious rea-
sons, while the backward peak is referred to as the recoil peak. This
latter name alludes to the fact that, for the electron to be emitted
in a direction opposite the momentum transfer, momentum con-
servation dictates that the ion recoils in the opposite direction.
Mechanistically, this would occur if the electron was initially kicked
in the forward direction but then back-reflected at its own parent
ion. Such a classical picture would suggest that the ion receives the
momentum originally imparted to the electron (that is, Q) minus
the final momentum, p,, of the electron. This expectation is verified
by our measured ion momentum distributions (Fig. 2g-i). The ions
also show a bimodal momentum distribution, with the main island
slightly forward shifted and a minor island significantly forward
shifted in the momentum transfer direction, in nice agreement with
the back-reflection scheme.

The observations suggest a two-step model for below-threshold
Compton scattering, which is referred to as the A* approximation
(see Methods). The first step is the scattering of the photon at an
electron being described by the Thomson cross-section. This step
sets the direction and magnitude of the approximate momentum
transfer. The second step is the response of the electron wavefunc-
tion to this sudden kick, which displaces the bound wavefunction
in momentum space. This momentum-shifted electron wavefunc-
tion then relaxes to the electronic eigenstates of the ion, where
it has some overlap with its initial state and with the bound excited
states. However, the fraction that overlaps with the Coulomb con-
tinuum leads to ionization and is observed experimentally. The
bimodal electron momentum distribution for small momentum
transfer follows naturally from such a scenario. The leading ionizing
term in the Taylor expansion of the momentum transfer operator
' is the dipole operator, with the momentum transfer replac-
ing the direction of polarization. This dipolar contribution, resem-
bling the shape of a p orbital, is the origin of the bimodal electron
momentum distribution.

The observed electron momentum distributions are in excellent
agreement with the prediction of the A* approximation shown in
Fig. 2a-c. Note that these theoretical distributions are calculated
without any reference to Compton scattering. What is shown is
the overlap of the ground state with the continuum (altered by the
momentum transfer). Exactly the same distributions are predicted
for an attosecond half-cycle pulse (see fig. 2 in ref. ) and identical
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Fig. 2 | Electron and ion momentum distributions for different momentum transfer gates. In all panels, p, is the momentum component in the k;
direction, p, is the component perpendicular to k; within the scattering plane. a-¢, Electron momentum distributions obtained from modelling within

the A% approximation using Approach Il (see Methods). d-f, Electron momentum distributions measured by our experiment. g-i, Measured momentum
distributions of the ions. From top to bottom, the rows correspond to different momentum transfers Q=1.0 (a,d,g), 0.8 (b,e,h) and 0.6 (c,fi) a.u.,
respectively. Arrows in the third column indicate the photon momentum configuration for each row. Blue arrows represent the momentum of the incoming
photon, light green arrows the momentum of the scattered photon and dark purple arrows the momentum transfer. A video of the electron and ion
momentum distributions for different photon scattering directions is provided in the Supplementary Information.

results are expected for a momentum transfer to the nucleus by neu-
tron scattering’.

Within the A% approximation, the magnitude of the energy trans-
fer is determined by energy conservation. It is worth mentioning
that, under the present conditions, the photon loses only a few per-
cent of its primary energy. Thus the momentum transfer is largely
a consequence of the angular deflection of the photon and not a
consequence of its change in energy. This can be seen by inspect-
ing the energy distribution of the ejected electron in Fig. 3a. The
electron energy distribution peaks at zero and falls off exponen-
tially. For electron forward emission (Fig. 3b) it peaks at 11eV for
photon backscattering, while the backward-emitted electrons for
the same conditions are much lower in energy (Fig. 3c). This also
manifests itself in the fully differential cross-section (FDCS) show-
ing the electron angular distribution for fixed electron energy and a
fixed photon scattering angle of 150 +20°. These angular distribu-
tions (Fig. 4) show that the intensity in the backward-directed recoil
lobe drops strongly with increasing electron energy compared to the
intensity in the forward-directed binary lobe. The physics govern-
ing the relative strength of the binary and recoil lobes is unveiled by
two sets of calculations by comparing theoretical calculations for
different initial electron wavefunctions and different final states.

758

First, we use a correlated two-electron wavefunction in the initial
state, with outgoing Coulomb waves with charge 1 as the final state.
Second, we use a single-active-electron model for the initial state,
with a final scattering state in an effective potential (Figs. 3 and 4).
We find that the binary peak is similar in all cases. However, the
recoil peak is enhanced by more than a factor of two when scatter-
ing states in an effective He* potential are used instead of Coulomb
states. This directly supports the mechanistic argument that the
recoil peak originates from backscattering of forward-kicked elec-
trons at the parent ion. This backscattering is enhanced due to the
increased depth of the effective potential compared to the Coulomb
potential close to the origin. The intensity of the recoil peak of both
approaches deviates from our experimental data, whereas the shape
is predicted correctly by theory. This hints towards the importance
of both theoretical approaches (a more detailed discussion is pro-
vided in the Methods).

In conclusion, we have shown the first FDCSs for Compton
scattering at a gas-phase atom, unveiling the mechanism of near-
threshold Compton scattering. Our experimental work shows good
agreement with our theoretical models, but further studies with
more sophisticated theoretical models are necessary. This work
can function as a benchmark measurement for such studies.

NATURE PHYSICS | VOL 16 | JULY 2020 | 756-760 | www.nature.com/naturephysics
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Fig. 3 | Electron energy distribution. The scattering angle between the incoming and outgoing photon for the outgoing photon is restricted to

140 <60<180° in all panels. a, The electron energy spectrum is shown independent of the electron emission direction. b, The electron emission angle is
restricted to forward scattering (0 <6, <40°). ¢, The electron emission angle is restricted to backward scattering (140 <, <180°). The black dots are the
experimental data. The error bars represent the standard statistical error. The solid lines are the theoretical results of Approach | and the dashed lines are
the results of Approach Il (see Methods). The experimental data in a and b are normalized such that the maximum intensity is 1; the theory is normalized
such that the integrals of the experimental data and the theoretical curves are equal. The normalization factors in ¢ are identical to those in b, because here

we depict the forward/backward direction of the same distribution.

Intensity (arb. units)

Intensity (arb. units)

Fig. 4 | Fully differential electron angular distributions. a,b, The photon scattering angle is 130 <8< 170°. Displayed is the cosine of the angle y between
the outgoing electron and the momentum transfer Q for electron energies of .0 <E,<3.5eV (a) and 3.5<E,<8.5eV (b). Insets show the same data

in polar representation, where the arrow indicates the direction of momentum transfer. Black dots are the experimental data, normalized such that the
maximum is 1. Error bars represent the standard statistical error. The solid and dashed lines are the theoretical curves resulting from Approach | and
Approach Il, respectively. The theoretical curves are normalized such that the integral of experiment and theory are equal.

Coincidence detection of ions and electrons, as demonstrated here,
paves the road to exploit Compton scattering for imaging of molec-
ular wavefunctions not only averaged over the molecular axis but
also in the body-fixed frame of the molecule. For slightly higher
momentum transfers Q, that is, photon energies of ~6keV, one
can expect the significance of correlations in the scattering states
to diminish, simplifying the theoretical description. As has been
pointed out recently, measuring the momentum transfer to the
nucleus in this case will give access to the Dyson orbitals''.
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Methods

Experimental methods. The experiment was performed at beamline P04 of
synchrotron PETRA III, DESY in Hamburg, with 40-bunch timing mode; that is,
the photon bunches were spaced 192 ns apart. A circularly polarized pink beam
was used; that is, the monochromator was set to zero order. To effectively remove
low-energy photons from the beam, we put foil filters in the photon beam, namely
980 nm of aluminium, 144 nm of copper and 153 nm of iron. With this set-up, we
suppressed photons of <100eV by at least a factor of 10~? and photons <15eV

by at least a factor of 10~ (data based on ref. **, 9 October 2019, obtained from
http://henke.lbl.gov/optical_constants/filter2.html). The beam was crossed at a
90° angle with a supersonic gas jet, expanding through a 30 pm nozzle at 30 bar
driving pressure and room temperature within a COLTRIMS spectrometer. The
supersonic gas jet passed two skimmers (0.3 mm diameter), so the reaction region
had approximate dimensions of 0.2 X 1.0 X 0.1 mm?. The electron side of the
spectrometer had 5.8 cm of acceleration. To increase the resolution, an electrostatic
lens and time-of-flight focusing geometry were used for the ion side to effectively
compensate for the finite size of the reaction region. The total length of the ion
side was 97.4 cm. The electric field in the spectrometer was 18.3 V. cm™ and the
magnetic field was 9.1 G. The charged particles were detected using two position-
sensitive microchannel plate detectors with delay-line anodes®.

Theoretical methods. In general, Compton scattering is a relativistic process. In
the special case of an initially bound electron, this process may be described by
the second-order quantum electrodynamics perturbation terms with exchange in
the presence of an external classical electromagnetic field due to the residual ion
(see for example ref. *'). In the low-energy limit of small incoming photon energy
E, compared to the remaining energy of an electron, m,c?, we can apply a non-
relativistic quantum-mechanical description”*. A modern presentation of this
approach is provided in ref. *. (In the following, we use atomic units unless stated
otherwise; that is, e=m,=h=1.) The energy and momentum conservation laws
are of the form

Ey = E +1Ip + Ee + Eon, ki = k; +p, + Pion (1)

where I, is the ionization potential, E, (p,) is the energy (momentum) of the
escaped electron, E,, (p,,) is the energy (momentum) of the residual ion and
E,, (k,),) are the energies (momenta) of the incoming and outgoing photons,
respectively. For the given keV photon energy range, the momenta are of the
order k;=E;/c~1a.u. with the speed of light c=a"", so that the energy of the
escaped electron is only a few eV. Given that M, , > 1, the ionic kinetic energy

Eion = P2,/ (2Mion) can be neglected. Hence, the photon energy is nearly
unchanged and the ratio of photon energy after and before the collision is

Ey I, + Ee + Eion

t=l=p - RT T N g 2
B E )

The transferred momentum from the photon to the atomic system is given by
Q=k, —k,=p.+p.,.. The magnitude and direction of the transferred momentum
Q may be expressed as a function of the scattering angle 6 between the incoming
and outgoing photon.

Under the above kinematic conditions, the FDCS may be written as

do

—_— tM 3
Taoa, ~ P ©)
with the classical electron radius r,. In this Letter, we use only the so-called A?
(seagull) term from the total second-order Kramers-Heisenberg—Waller matrix
element, as is presented, for example, in ref. **:

ol Z < |#) o)

Here, e, are the polarization vectors of the incoming and outgoing photons.
Initially, the N electrons of the system with positions r; are in the bound state ¥,
Given that, in the detection scheme, we select singl 10nized helium ions, the final
state of the electronic system is a scattering state ¥}~ ) with one electron in the
continuum (corresponding to an asymptotic electron momentum p,) and the other
electron remaining bound.

Assuming an unpolarized incoming photon beam and that we do not detect
the final polarization state of the outgoing photon, we also average over the initial
polarization and sum the probabilities corresponding to both possible orthogonal
polarization states. Under these assumptions, the FDCS can be written as

_do _(do fIM.J? (5)
dE.dQ.d2,  \d@, ), P

with the Thompson cross-section
( do ) -~
de, Th

NATURE PHYSICS | www.nature.com/naturephysics

M(Q,p.) =

1
~r2(1 + cos’d) (6)

for photons scattered off a single free electron and the electronic matrix element

M.(Qp.) \Ze’Q”I'Po 7)

From the FDCS, the different observables shown in the main text can be calculated.
The A? approximation resembles the first Born approximation for scattering

of a fast particle on an atom, for example (e, 2e) ionization by electron impact’.
Therefore, the observed effects have an analogous interpretation and can be
described in familiar terms. However, the Compton ionization has some advantages
compared to traditional methods such as (e, 2e) ionization: (1) the contribution of
other second-order terms is very small, so the A2 approximation is often accurate;
(2) the photon has no charge, so we only need to consider the evolution of the field-
free system of charged particles; (3) the transferred momentum Q can vary in a
wide range, so different regimes are accessible.

Compton scattering by a bound electron is a sequential process and
may be divided into two steps. In the first, the incoming photon is captured
by a bound electron. Afterwards, this dressed system evolves in time so that a
photon is emitted and an electron escapes. In the A* approximation, the second
photon is emitted immediately after absorption, so this short photon scattering
process can be effectively interpreted as a ‘kick” of the electronic bound-state
distribution by the transferred momentum Q. The corresponding scattering
probability is described by the Thompson formula. The ‘kicked; field-free atomic
system evolves in time. One part of the boosted wavefunction remains bound,
while the other part is set free in the continuum and causes ionization. In principle,
the time evolution, including the interaction between electrons and their possible
correlation, is implicitly contained in the scattering state 5” ) in equation (7).
However, the calculation of fully correlated scattering states ‘is beyond the
scope of this work.

To calculate the electronic matrix elements, complementary approaches have
been used: the first model (Approach I) describes both electrons and takes into
account correlation in the ground state, but uses Coulomb waves as scattering
states. In contrast, the second model (Approach II) uses a single-active-electron
description, but includes accurate one-electron scattering states.

Approach I: model with correlated ground state. In the first approach, both electrons
of the helium atom are explicitly treated such that the ‘direct’ ionization of the
‘kicked’ electron as well as the ‘shake-off” (that is, ejection of the unkicked
electron) are considered. In equation (7), the initial state is given by a correlated
symmetric two-electron ground state ¥(r,, r,), obtained from ref. *. To
approximate the final state, the main idea is that one electron remains bound

in the ionic ground state given by

(1 —i¢)e®™ Fy (i, 1, —ip,r — ip, - 1) (9)

with {=—1/p,and |F, belng the confluent hypergeometric function. Because the
correct scattering states ’)" )(r1, 1) have to be orthogonal to the initial bound
states, the resulting symmetnzed final state

5(-) 1 - -
¥, (r,n) = 7 Wy, (COWES (62) +yp (e2)yr (x1) (10)
is afterwards explicitly orthogonalized with respect to the initial state ¥, such that

the electronic matrix elements of equation (7) read

MQp) =
- (, Jer 4 e o) - (1)

(F wo) (Wole@r 4 el@nyy)

W le@n 4 e@n )

Approach II: single-active-electron model. In the second approach only the ‘kicked’
electron may escape, while the other electron stays frozen at the core. To model
the influence of the remaining electron on the escaping electron, we use a single-
active-electron effective potential*’. This potential has an asymptotic charge of
Z=2 for r— 0, which is screened by the second electron such that, asymptotically
for large r, it reaches Z=1. The one-electron ground state y, and the one-
electron continuum state y,_’ with incoming boundary conditions are calculated
numerically by solving the radial Schrodinger equation. Hence, the electronic
matrix element in equation (7) is approximated as

Me(Q.pe) = V2 (v, 1€V o) (12)
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This expression is calculated using a plane wave expansion of ¢?* and an expansion
of the scattering states y,_’ in terms of spherical harmonics.

Both approaches use two main approximations. (1) The final scattering
states are not the exact fully correlated states. This leads to deviations in the
low-energy region at the recoil peak. In particular, ‘shake-off” and ‘shake-up’
processes are not fully included. To some extent, correlations are included due
to the orthogonalization in Approach I and the effective potential that is used in
Approach II. However, we believe that including correlations in the final state in
a more systematic way is more important than in the ground state. (2) The state
of the residual ion has not been resolved in the experiment. In Approach I, we
assume that the bound electron remains in the ground state of the ion, whereas
it is simply frozen in the ground state of the atom in Approach II. We expect that
this works well for the binary peak (forward direction), but not for the recoil peak
(backward direction). To improve the calculations, ionization in different channels
corresponding to excited states of the residual ion need to be considered.

Data availability
The data that support the plots within this Letter are available from the
corresponding authors upon reasonable request.

Code availability
The code that supports the theoretical plots within this Letter is available from the
corresponding authors upon reasonable request.
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The problem of a quantum-mechanical description of a near-barrier fusion of heavy nuclei, that occurs at
strong coupling of their relative motion to surface vibrations, is analyzed. To this end, an efficient finite-
element method is proposed for numerically solving coupled Schrodinger equations with boundary conditions
corresponding to total absorption. The method allows us to eliminate the instabilities in the numerical solutions
that appear at a large number of coupled channels in some reactions. To illustrate the validity of our approach,
the results of fusion cross section of the %Ni+ Mo and S+ “®Ca reactions have been re-examined.
The obtained results demonstrate a remarkable agreement with the available experimental data. It is found
that experimental data can be reproduced with the use of the Woods-Saxon potential, without introducing the
repulsive cores. It appears that the fusion cross sections at deep sub-barrier energies are sensitive to the potential

pocket profile.

DOI: 10.1103/PhysRevC.101.014618

I. INTRODUCTION

Nuclear fusion phenomena have attracted considerable
theoretical and experimental attention over several decades
[1-7]. Although basic notions of this phenomenon are rel-
atively well understood, there are still many hidden details
that require clarification. This is especially important, for
example, in light of synthesis of superheavy nuclei and eval-

2469-9985/2020/101(1)/014618(10)

014618-1

uation of boundaries of the nuclear drip line. According to
general wisdom, the latest problems are closely related to
intimate knowledge of various stages of astrophysical nu-
cleogenesis, from the Big Bang to creation of life on our
Earth.

Thanks to significant improvement of experimental sen-
sitivity in view of the remarkable development of semicon-
ductor detectors and computational capability, it becomes

©2020 American Physical Society
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possible to systematically investigate stable and exotic nuclei
at energies well below the Coulomb barrier. In particular, the
fusion experimental data at deep sub-barrier energy have been
measured down to 107> mb [8]. Evidently, already available
experimental data require reliable qualitative and quantitative
interpretation. For example, the threshold anomaly problem
[9-11], diffuseness parameter anomaly problem [12,13], deep
sub-barrier fusion hindrance and its associated impact on
stellar evolution [14—16], subbarrier positive Q-value fusion
enhancement [17-22], and above barrier fusion suppression
phenomena, to name just a few, are challenges to the theory.
It is at once apparent that the degree of accuracy of theoretical
calculations may lead to different conclusions on the same
phenomenon [8,23-29].

The cross sections of near—barrier and especially sub-
barrier fusion of nuclei can be described within the coupled-
channels models that are based on various approximations
(e.g., Refs. [30-33]). In particular, the approach of di-
rectly constructing a numerical solution to the set of cou-
pled Schrédinger equations (see for details Refs. [6,34])
provides a convenient ground from which to calculate the
fusion cross sections. Note that colliding nuclei may de-
velop large dynamical deformations. Consequently, this prob-
lem requires the consideration of large number of coupled
channels (see, e.g., for discussion Refs. [35-37]). As a re-
sult, one needs to preserve the numerical accuracy of the
calculations, and this requires carefully treating boundary
conditions.

There are generally two approaches to construct the fusion
cross sections based on the solving of the coupled-channels
equations. The first one is to use the regular boundary con-
dition and the complex potential [5]. The fusion is defined
as the absorption of the incident flux due to the imaginary
part of the potential. The fusion cross section can be pre-
dicted accurately by the explicit integration of the imaginary
potential over the radial wave functions. The other approach
adopts the incoming wave boundary condition (IWBC). It
assumes that there is a strong absorption in the inner region
such that the incoming flux never returns. In this case, it
is enough to consider the real potential only [6]. Follow-
ing the same theoretical ideas as in Ref. [6], we develop a
new algorithm for solving a set of second-order differential
equations. We consider the boundary conditions with a strict
requirement of a complete absence of the reflected waves
from the intrinsic region behind the barrier. We calculate the
matrix elements of the interaction between colliding nuclei
explicitly.

The structure of the paper is the following. The theoretical
framework is briefly discussed in Sec. II. Results of numer-
ical calculations on two fusion reaction systems within our
approach are presented in Sec. III. A summary of our work is
given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, for the sake of completeness, we review the
basic notions of the coupled-channels model (see for details,
e.g., Refs. [6,30,34-36,38]).

A. Basic equations

The fusion cross sections, decomposed over partial waves,
have the following form:

ah &
or(E) = E ;@1 + DP(E). (1)

Here, E is the center-of-mass energy, u = ApAr/(Ap + Ar)
is the reduced mass, Ap(r) is the mass of the projectile (target)
nucleus, [ is the orbital angular momentum, and P;(E) is
the barrier penetration probability. Our task is to find the
coefficients P;(E).

Consider a collision between two nuclei, taking into ac-
count the coupling of the relative motion between the centers
of mass of the colliding nuclei, r = (r, ) to a nuclear intrinsic
motion £. The system Hamiltonian has the following form:

2

H(r, §) = —;—MVE + V() + Ho(§) + Veoup(r, §),  (2)
where Hy(&) describes the intrinsic structure, while the term
Veoup(r, &) describes the coupling between the relative motion
and the intrinsic structure. Note that the intrinsic degree of
freedom & may have a finite spin /. In this case, for a fixed total
angular momentum J and its z component M of the system,
the channel wave function can be chosen in the following
form:

(REN@IDIM) =Y {ImyImy|IM)Y (8Pt (8),  (3)

where Y},,, (%) is the spherical harmonics. The wave functions
of the internal motion @, (§) is subject to the equation

HO(S )(palm, (5) = €xlPalm; (5)’ (4)

where « stands for quantum numbers associated with the
intrinsic motion and €,; is the corresponding eigenenergy.
Expanding the total wave function with the channel wave
functions as

J
Wr, 6= ”“’+(’")<f5|(au)JM>, 5)

a,l,l

one obtains the coupled-channels equations for u?,,(r)

W odr 1+ DR
[_ﬂd? —2Mr2 +V(@)—E+ ea,l}ué,,(r)
+ Z Voﬁlga,l/l/(r)ué,l,p(r) =0, (6)
oI

. . J .
where the coupling matrix elements V,; , ;.. ,, ;/(r) are given as

o,

Ve 1t () = (@IDIM Veouy (F, @' UTYIM).— (7)

o

In solving the quantum problem in question, we employ
the so-called isocentrifugal approximation (see details in
Ref. [6]). In this approximation, the angular momentum of the
relative motion in each channel is replaced by the total angular
momentum. In this case, one ignores the change of the orbital
angular momentum due to intrinsic excitations. Such approx-
imation allows us to reduce several-fold the dimensionality of
the set of differential equations that should be solved.

014618-2
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B. Vibrational coupling

To demonstrate all pros and cons of our approach we
analyze couplings of the relative motion to surface vibrations
of a target nucleus only, comparing our results with those well
known from literature. Hereafter, for the sake of convenience,
we consider the potential between the projectile and the target
as a function of the relative distance r between them:

V(r) =Vnx(r) + Ve(r). ®)

The potential contains the Coulomb term Ve = ZpZre? /r and
a phenomenological nuclear potential Vi (r), that is chosen in
the Woods-Saxon form:

Vo
1 + exp[(r — Ro)/aol’

Here, the parameters Vj, Ry, ap are the potential depth, poten-
tial radius, and diffuseness, respectively.

The nuclear coupling term of the Hamiltonian (2) can be
generated by changing the target radius in the potential to a
dynamical operator Ry + O [39]. The surface operator O is
defined as

Vn(r) = — ©)

Y 3,4
0= \/T*_ﬂrwupA;”(am + ax). (10)

where aio (ayo) is the creation (annihilation) operator of the
vibrational mode of the multipolarity A. In this representation,
the matrix element of the operator O has the following form:

A B
Onm = =
L4

where the n-phonon state of the multipolarity A is defined as

rcoup A;"/S(\/%(Sn,m—l + \/ﬁsn,m+l)a (11)

|
In) = —=(a,,)"10).
n!

7

The deformation parameter B;, that defines the ampli-
tude of the zero-point motion, can be determined from the

|

Y () = {

exp (_ikn(rmin)r)T;moa
Hl_ (k”r)gnwnn - H[+ (knr)Rnn,,s

experimental transition probability

_ 4n [BEM?T
ﬂk_szTR; ER (12)

where R is the radius of the spherical nucleus. In our con-
sideration, the variable r . is a free parameter, being slightly
varied around the mean value 1.2 fm. The nuclear coupling
matrix elements are then determined as

V) = (nlVpr(r, O)im) = VO ()8 m, (13)

where Vi (r, 0) <= Vi (r, Ry + 0), V'(r) = Vi (r) (see
Eqgs. (3.52)—(3.59) in Ref. [6] for more details). The latter term
in Eq. (13) is introduced to counteract the coupling interaction
in the entrance channel [40].

Thus, in the isocentrifugal approximation, the coupled-
channels Schrodinger equation has the following form:

P d* I+ DR 0 ZpZye?
_—— —_— V( ) - n_E nn,
[ 21 dr? 2ur? 0+ r te :| Vi,
N
+ D Vo (M), () = 0. (14)

n'=1

In the above equation, €, is the excitation energy of the
nth channel or threshold energy, n = 1, ..., N, that is defined
by Eq. (4). The number n, is a number of the open entrance
channel with a positive relative energy E, = E —¢,, > 0,
n,=1,...,N, <N, and the wave functions {Ipn,,”(r)}g:1 are
components of a desirable matrix solution. The coupling
matrix elements (7) are transformed to the matrix element
V. (r) that consists of the Coulomb and the nuclear potentials
V/\(P )(r) in each entrance channel.

The solution of Eq. (14) is obtained under the IWBC.
Namely, it is assumed that there is a strong absorption inside
the potential pocket. The asymptotic boundary conditions of
such type are determined conventionally for components of
matrix solutions {w,mo(r)},’:’: | in the open entrance channels n,
with a positive relative energy E, by the following relations:

7 < min,  Kn(#Fmin) > 0,

5)

r > I'max-

The functions Hli(k,,r) = *iF;(ny, k,r) + Gi(ny, k,r) are the outgoing and the incoming Coulomb partial wave functions,
respectively. They are determined by means of the regular F;(n,, k,r) and the irregular G;(n,, k,r) Coulomb partial wave
functions [41]. Here, k,(r) is the local wave number for the nth channel

2
= / e -

7

that depends on the excitation energy €, of the nth channel.
The asymptotic behaviors of the functions HlﬁE (k,,r) are de-
fined as

!
HE(kyr) — exp |:j:i<knr— 70 I0(2kn) + G — 7”)} (17)

where 1, = k,ZyZpe* /(2E,) is the Sommerfeld parameter;
om =argl'(l + 1+ in,) is the Coulomb phase shift in open

channels at k, = v2u(E — €,)/h> > 0.

2
ZrZre” Vm,(r)] (16)

On the other hand, for the components of v, (r) with
elements n =N, + 1,..., N, where n is restricted by the

condition E,, = E — ¢€,<0, we have

w;zrslu(r) _ {eXP(|kn(i’min)|V), 7 < Tmin, (18)

0, r 2 Fmax-

The conventional partial fusion probability P;(E) for the
incident channel ng is determined by summation over all open

014618-3
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channels of intrinsic states at k,(rpin) > Oforn =1, ..., N,:

2. oy (Fnin) 2
P(E) = T, (E) = ) == T, [ (19)

n=1 Mo

where the incident wave number k,, = V2u(E — ena)/hz.
Finally, the total fusion cross section is expressed as a sum
over partial waves at the center of mass energy E, which is

of(E) = Zo”(E)— 2Z(zzﬂ)PI(E) (20)

=0 "010

C. Boundary conditions

Prior to proceeding to the numerical analysis, a few com-
ments are in order. In Eq. (15), ryax is set as a large enough
distance where the interaction is weak, and the off-diagonal
elements of the coupled matrix tend to be zero. The minimal
point ry, is taken as the minimum of the potential pocket.
The plane wave boundary condition at the left boundary ry;,
involves only the diagonal part of the coupling matrix element
ky(rmin) from Eq. (16). This requires that the off-diagonal
matrix elements tend to be zero. However, at ry;,, the distance
between two nuclei is so short that the off-diagonal matrix
elements are usually not zero. As addressed in Ref. [35], there
can be sudden noncontinuous changes in the left boundary,
and this will cause the distortion for the total wave function in
the barrier region. To resolve this problem, we further develop
the approach proposed in a series of papers [37,42-48].

First, it is reasonable to assume that at r,,x the contribution
of closed channels is negligible small. Consequently, we can
use the conventional Dirichlet boundary condition at rp,x for
components of matrix solutions ¥/, (rmax) = 0 of Eq. (14) for
[n=1,...,N;n,=N,+1,...,N] in closed channels [see
also Eq. (18)]. Second, at the left boundary we adopt the linear
transformation method [37]. The essence of this method is the
following:

Let consider the matrix W to be a symmetric matrix of our
problem [see Eq. (14)] of the dimension N x N

Wim = W
_ 2u[(1a+ DR VO
R 2ur?
ZpZT€2
+ T + €n 3nm + Vnm(r) ) (21)

and the constant matrix in the vicinity of the left boundary

point r = rpi,. In the above equation, V,,,(r) = \/H%V)(r) +

V©(r), where VIV (r) is obtained by Eq. (13) and V) (r)

is the Coulomb Zlguphng matrix elements (see Eq. (28) in

J

Here U(l + 1 + n,, 21 + 2, 2|k, |r) is Whittaker function [41],
1, and R,,,, are desirable partial transmission and reflection

- H1+ (knr)Rnn,,s
20kl 2P exp(— 1k VU (L + 1411, 21 + 2, 2k ), 7

Ref. [34] for more details). Here, the matrices A and W are the
matrix of eigenvectors and the diagonal matrix of eigenvalues
of the eigenvalue problem, respectively. Namely, we have

WA = AW, {W}nm = 8anmm’
Wit < W < -+ < Wi (22)

In this case, the linear independent matrix solution

{¢,,m(r)}ﬁxm=1 of Eq. (14) can be written in the form

¢mn(r) = Anmym(r)s (23)
where functions y,,(r) are solutions of the uncoupled equa-
tions

2u

v (r) + K2yn(r) = 0, Ki—h—E Wi (24)

In open channels at K2 > 0,m = 1, ...,
Vm(r) have the form

M, < N, the solutions

exp(—iK,r)
m(r) = ——, 25
Ym(r) N (25)
while in closed channels at K,%l <0m=M,+1,...,N,
exp(|Ku|r)
ym(r) = — (26)
e

In this case, V,,,(r) is expressed by the linear combinations
of the linear independent solutions ¢, (r)

M, M,
wnno(r) = Zﬁbnm(r)fmno = ZAnmym(r)’fmnva
m=1 m=1
¥ = Fmin- 27)

In this way, the off-diagonal matrix elements have been con-
sidered in our calculations (see Sec. III). We consider the
following boundary conditions in two endpoints. At r = ry;p,
we have in terms of corresponding solutions A,,, n,m =
I,..NatK, >0,m=1,...,M, < N for open exit channels
and pure imagine K, < 0, m =M, + 1, ..., N for closed exit

channels
exp (—iKy,r) .
Y, (1) = ) Aun———Tmn,
Z =
exp(|Kin|r) 4,
+ Z Anm Tmn s ' = I'min- (28)
S TRl
At r = rpax, the asymptotic solutions are given in the terms
of normalized Coulomb functions H;* (k,r) = H;* (k,r)/~/kn,
kn >0, n=1,..,N, <N, and for components of
xp“ (Fmax) = 0(1) with elements n=N,+1,...,N for
closed channels,
' = I'max,

rmax-

(

amplitudes, and they are at n, = 1 desirable—from a ground
state |i,) = |n, — 1) = |0) of the intrinsic motion before the

014618-4



NEAR-BARRIER HEAVY-ION FUSION: ROLE ...

PHYSICAL REVIEW C 101, 014618 (2020)

collision, Tnin,, are transmission amplitudes in closed channels
m=M,+1,.. N.

The third type or Robin boundary conditions for solutions
Y, (r) of Eq. (14) follow from their asymptotic expansion

Vnn, (1)

N
A, (1)
( dr - Z G’m'(r)l/fn’nﬂ(r) = 0’ (30)
=l ¥=Tmin " 'max
where G,,, (r) are solutions of algebraic problem
Vi) S
( T - 2 G ()i, () =0. @)

=Tmins"max

In this case, at fixed orbital momentum / the partial fusion
probability

P(E)=T\) (E) (32)

is given by summation over all possible intrinsic states:

2

)

M,
Tn(vl,fo (E ) = Z |fmng
m=1

2 (33)

N,
RV (E)= Z |Ron,
n=1

7O (E)=1-RV (E),

Nolo Nolo

that we used P,fiflo (E)= Tn(olnu (E) in the conventional formula
for total fusion cross section (20). The above discussed ideas
have been transformed to the improved version of the program
KANTBP used in our calculations. This program is based
on the finite-element method and will be presented in the
forthcoming paper.

It is noteworthy that the condition 7,) (E) + R (E) —
1 = O fulfills in below calculations with ten significant digits.
This means that the calculated scattering S matrix is symmet-
ric and unitary with an accuracy of the same order [45]. The
reader can find details of the preceding version of the program
KANTBP in Refs. [43,44].

III. RESULTS AND DISCUSSION

In order to validate our approach, we calculate the tun-
neling probability and fusion cross sections for '°0Q + '“*Sm
by means of KANTBP. We consider one incident channel and
one coupled channel. Only the low-lying collective 3~ vibra-
tional state of !#*Sm with the excitation energy 1.81 MeV
is taken into account. Our results demonstrates a remarkable
agreement with those obtained by the modified Numerov
(MNumerov) method (employed in CCFULL) (see Fig. 1). The
potential parameters, used in this calculation, produce a very
steep potential pocket, with barrier height at 61.25 MeV and
pocket minimum at 8.94 MeV. The lowest incident energy is
55 MeV, which is far higher than the potential minimum.

For most fusion reaction systems, the results predicted
with the use of KANTBP and CCFULL are almost identical
when there are few coupled channels at near-barrier incident
energy. For example, we observe such the agreement as well

0 f
08 |
06 |
04 |
02 |
00 |

0 &)

Py

MNumerov
KANTBP o

00 ‘ ‘ 1w
450 | {1 10

300 |

G (mb)

150 | 1 |

55 60 65 70 55 60 65 70
E(MeV) E(MeV)

FIG. 1. The tunneling probability and fusion cross sections for
%04 Sm at linearization and logarithmic scale. The results
obtained with the use of CCFULL are connected by solid line; also
labeled as MNumerov. The results obtained by means of KANTBP are
denoted by open circles. The parameters used in both calculations
are taken from Ref. [34].

for 328, 40Ca + 909497 reactions. The method introduced
in these cases does not gain so much. However, when the
number of coupled channels is increased considerably, the
differences become more evident. Besides that, at the deep
sub-barrier energy region, when the incident energy is close
to the potential minimum, the fusion cross sections are very
low and quite sensitive to the theoretical scheme.

In the following, we will consider ®Ni+ Mo and
369 + “8Ca reactions and compare the results obtained by
means of our approach and with the use of CCFULL. These
two reactions have been both measured down to the deep
sub-barrier energy region. Because of the instability of the
modified Numerov method used in the CCFULL calculations,
the shapes of the cross section lines can be different by
connecting fusion cross section points at different incident
energies. In order to avoid the shape uncertainty, we perform
calculations at available experimental data except where there
is no experimental point at the lowest energy.

In Table I, the adopted structure properties including exci-
tation energies and deformation parameters for the nuclei used
in this study are listed [49,50]. The low-lying collective 2
and 3~ vibrational states are considered. The radius parameter
Teoup in the coupling interactions of Eq. (10) is assumed as

TABLE 1. Adopted excitation energies E,, spins and parities
A", m = (=1)*, and deformation parameters B, of the low-lying
collective excited states for the indicated nuclei. The units of the
excitation energies are in MeV.

Nucleus 36g BCa *4Ni 1000
E,+ [49] 3.291 3.832 1.346 0.536
B> [49] 0.168 0.106 0.179 0.231
E5- [50] 4.193 4.507 3.560 1.908
B3 [50] 0.376 0.230 0.201 0.218
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1.2 fm for both target and projectile in all the following
calculations. The numbers of target 3~ phonon, target 2%
phonon, and projectile 2% phonon are denoted as Nr,_, Nr,,,
and Np,, respectively. The total coupled-channels number
will be Neowp = (N, + 1D)(Np,, + D)(Np,, + 1) — 1 when all
mutual excitations are included. It means that number of
coupled equations in Eq. (14) is N = Neoyp + 1.

The Woods-Saxon potential parameters in Eq. (9) derived
from Akyiiz-Winther (AW) parametrization [53,54] are used
in the next step of calculations. This potential is obtained by
means of fitting large-scale experimental scattering data, and
has been successfully used in describing different kinds of
reactions. It is written as

v
V() =~ . . (3
1 + exp[(r — Rp — Ry)/ao]
where
Vo = (16w yagR) MeV,
1
— = 1.17[1 +0.53(4," + A7) ] fm™",
ao
& ReRr
Rp + Ry’
R = (124} —0.09) fm, i=PT,
Np — Zp)(Ny — Z
y =0.95(1— 1 g Ve ZZDWNE = Z0)\ 4oy g2
ApAr

Here Np(r) is the neutron number of the projectile (target) nu-
cleus. The fusion reaction ®Ni+ '’Mo had been measured
at the superconducting linear accelerator ATLAS of Argonne
National Laboratory [51]. The coupled-channel calculations
that adopted different vibrational properties and nuclear ra-
dius were unable to reproduce the experimental fusion cross
sections at deep sub-barrier energies. Hence, it was concluded
that this system exhibits a hindrance for fusion. In Ref. [29],
the CC calculations with the M3Y+ repulsion potential were
used to describe the experimental data. Later, it was reported
in Ref. [52] that the coupled-channel calculations, including
a much deeper well potential than the standard AW potential
[53,54] and a small radius parameter, will fit the experimental
data well. In Ref. [19], the authors reproduced the major part
of the experimental data by means of the coupled-channel
method [35,36]. In these calculations, the standard AW poten-
tial, and the phonon numbers NTr =2, Nr,, = 2, and Np,, =
2, Np,_ = 1 are adopted. However, the slopes are deeper, and
the predicted cross sections are generally smaller than the
experimental data for energies £ < 125 MeV.

The results obtained by means of KANTBP repro-
duce the experimental data well (see Fig. 2), without
any special settings on the potential. In these calcula-
tions, 26 coupled channels are considered in the cal-
culations, taking into account the number of excited
states of the target: Nr, =2, Ng, =2, and Np, =2.
The detailed channels are listed in Table II. The standard AW
potential [53,54] is adopted. Note that the above-barrier and
below-barrier fusion cross sections are described within the
experimental errors quite well. In contrast, the CCFULL results
fluctuate when the incident energy E < 130 MeV, and far

800 M T T T ]
I —— MNumerov ]
600 F e KANTBP 1
[ @ Exp ]
S 400 [ 64Ni+100M0 1
g » ]
N 4
S [ ]
200 ' 5
of 1
: 1 1 1 1 1 :
T T T T I
10"
! ]
0 F 3
= 10F
z | ]
= 2 F E
o 10F ¢ E
10 F 10 3
F @ | | E
6 E@ 124 128 E
10 o L 0 1 R N B
120 130 140 150 160

E (MeV)

FIG. 2. Fusion cross sections for *Ni + '©Mo. The experimen-
tal data (open circles) are from Ref. [51]. The fusion cross sections
at the lowest two energies are the upper limits, which are indicated
with arrows. The comparison of results obtained by means of CCFULL
(solid line, also labeled as MNumerov), and by means of KANTBP
(dotted line). All calculations are performed at the experimental
incident energies except where there is no experimental point at the
lowest energy. The insert is an enlargement of the sub-barrier fusion
Ccross sections.

from the experimental data at deep sub-barrier energy region.
We have also tested the predictions obtained with the use
of CCFULL + stabilization method (see Ref. [55]), which is
the same as the solid lines shown in Fig. 2. It should also
be noted that when the Coulomb potential is changed to a
spherical one, the instability at the low-energy tail will be
shifted downward according to the radius parameters because
the spherical Coulomb potential produces a deeper potential
pocket and lower threshold energy.

In these calculations for / = 0, the largest diagonal matrix
elements of the matrix #ZW /2. in Eq. (21) is 130.98 MeV.
At the incident energy E < 130.98 MeV, the results of

TABLE II. The list of the 26 coupled channel for NTf =2,
N, = 2, Np, = 2 in the form of |73- 7>+ P>+ ) excluding the ground-
state channel |000).

Configuration Channels

Projectile [001), 1002)

Target [100), [200), [010), [020), [110), [120), |210), [220)

Mutual [101), |201), |011), |021), |111), |121), |211), |221)
[102), [202), [012), [022), [112), |122), |212), [222)
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20—
1000 , —— MNumerov j

Eo e KANTBP ]
800 F O Exp e
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400 |
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FIG. 3. Fusion cross sections for S+ “*Ca. The notations are
the same as in Fig. 2. The experimental data (open circles) on fusion
cross sections are from Ref. [15]. The calculations are performed at
the experimental incident energies except where there is no experi-
mental point at the lowest energy. The insert is an enlargement of the
sub-barrier fusion cross sections.

calculations should be influenced heavily by the nondiagonal
elements. However, this effect is not considered in CCFULL.
This observation explains the reason why the calculation start
to fluctuate below this energy. The linear transform procedure
introduced in this study changes not only the threshold energy
by diagonalization, but also the number of open channels and
closed channels. As a result, the final transmission matrix,
and the cross sections will be affected. By considering the
nondiagonal element in the W matrix at the left boundary,
the calculation by KANTBP produces more stable results below
about 130 MeV.

The fusion reaction 3°S + “8Ca was performed at the ac-
celerator of the Laboratori Nazionali di Legnaro of INFN [15].
A deep sub-barrier fusion hindrance feature of this reaction
system had been reported. A large diffuseness parameter of
a = 0.95 fm was used to reproduce the data above and below
the barrier, which may actually mimic the presence of the deep
inelastic reactions [12]. In Refs. [56] and [16], the double-
folding ion-ion potential from different parametrization plus
a repulsive contact term was adopted to describe the exper-
imental cross sections. A weak and short-ranged imaginary
potential is also used in Ref. [16] in order to remove some
unwanted fluctuations in the theoretical calculation.

The results of fusion cross section calculations for

35 4 *8Ca are presented in Fig. 3. In KANTBP, we use the
same standard AW nuclear potential and the 26 coupled chan-
nels are considered, since there are the following excitations:

TABLE III. Woods-Saxon potential parameters V, (MeV), ag
(fm), Ry (fm), fitted at different combinations of the vibration phonon
numbers Nr,_, Np,,, N, for fusion excitation function of the

3G 4 “8Ca reaction. The standard AW-type potential parameters are
listed in the second column for comparison.

AW Ch-0 Ch-1 Ch-17
Nr,_ 0 0 1

Nr, 0 0 2

Np,, 0 1 2

Vo (MeV) 61338 72.325 61.355 55911
ag (fm) 0.654 0.636 0.652 0.676
Ry (fm) 8.143 8.272 8.298 8.167
Vs (MeV) 42.706 41.885 42.041 42.617
Ry (fm) 10.052 10.296 10.228 10.042
i (MeV) 3.285 3.315 3.249 3.196

Nr_ =2, Np,, =2, and Np,, = 2. The results demonstrate
good agreement with the experimental data near the barrier
energy region. At the deep sub-barrier energy region, KANTBP
results are slightly higher than the experiments, which may
indicate the fusion hindrance feature for this reaction system.
In contrast, CCFULL results manifest large fluctuations at the
deep sub-barrier energy region. The reason of this fluctuation
is the same as for the above discussed case (see Fig. 2).
Namely, at / = 0 the largest diagonal matrix elements of the
matrix #*W/2u in Eq. (21) is 38.13 MeV. For the incident
energy E < 38.13 MeV, there is a contribution of nondiagonal
elements that are non-negligible. They are missing in CCFULL
calculations.

Despite the many previous calculations mentioned above, it
is of great interest to see whether the experimental fusion data
can be explained by a simple Woods-Saxon-type potential
model. In the following, we will try to find out that whether it
is possible to describe well the experimental data by fitting the
three parameters of the Woods-Saxon potential. The stability
of the numerical method KANTBP is advantageous for fitting
under some extreme parameters. The three Woods-Saxon
potential parameters Vy, Ry, and ap are fitted to reproduce
the fusion cross sections of 3°S 4 “8Ca under different kinds
of collective vibrations. The fitting parameters are shown in
Table III, and the corresponding calculations under different
conditions are given in Fig. 4. Different lines in the figure
are denoted by the number of the coupled channels used.
Three cases are examined here: 0, 1, and 17 coupled channels.
The results of fitting demonstrate a good agreement with the
experimental data for all three cases, in the above barrier
energy region and below barrier energy region. The calcu-
lations under different collective vibrations are also almost
overlapped.

The fitted Coulomb barrier properties, including barrier
height Vg, barrier radius Rp, and the barrier curvature fiw, are
listed in Table III. It can be seen that all fitted parameters
in the last three columns are not very far from the stand
AW parameters in the second column. It is not necessary
to use very deep sub-barrier depths or very large diffuse-
ness parameters to agree with the experimental data, like
Vo =165 MeV and ap = 0.95 fm in previous study [15].
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IV. SUMMARY

One of the standard methods to predict the fusion cross
sections of light nuclei and capture cross section of the mas-
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1200 ————————————F——r—1 potential shallower and use more reaction channels. However,
. ] this reaction system can still be described well by using
1000 i g the simple Woods-Saxon potential. Comparing the lines AW
800 | ] and Ch-17, the Coulomb barriers are almost not changed,
_ i ] but the shapes of the potential well are quite different. This
g 600 | ] demonstrates that the deep sub-barrier fusion cross sections
‘g 400 ; ] are very sensitive to the inner shape of the potential well,

s ] which have also been discussed in Ref. [25].

200 | .

o (mb)

10'4 : PR R R R T S
36 40 44 48 52 56 60
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FIG. 4. Fusion cross sections for 3°S + *3Ca. The experimental
data (open circles) on fusion cross sections are from Ref. [15]. The
calculations with standard AW potential and O coupled channels are
denoted by the solid lines. The fitted calculations performed with 0,
1, 17 coupled channels are represented by the dashed lines (Ch-0),
dash-dotted lines (Ch-1), and dotted lines (Ch-17), respectively.

Corresponding fitted Woods-Saxon potentials are plotted in
Fig. 5. The results obtained by the different methods show the
different fitting the experimental data. However, the changing
trends of the potential barrier can be seen from this figure.
The fitted potentials reflect two tendencies in order to describe
well the experimental fusion data theoretically, especially at
the deep sub-barrier energy region. On the one hand, one can
include fewer reaction channels and deeper potential inside
the barrier pocket. On the other hand, one can make the

60'I"'I"'I"'I"'I'

r (fm)

FIG. 5. The Woods-Saxon potentials calculated by different pa-
rameters listed in Table III. The notations are the same as in Fig. 4.

sive nuclei is to solve the set of coupled-channel differential
equations with the use of the Numerov method. It is the heart
of the full order coupling code CCFULL [34]. However, the
CCFULL code, taking into account a large number of coupled
channels, exhibits characteristics instabilities of the fusion
excitation functions for some reactions. In the present paper,
we developed a new algorithm for solving a set of second-
order differential equations with the use of the finite-element
method. To attack this problem, we further developed the
approach proposed in series of papers [37,42-46,48]. Guided
by our approach, we constructed the program KANTBP that
was used for analysis of the fusion cross section of the
%4Ni 4 1Mo and S+ “Ca reactions. We demonstrated
that our approach allows us to eliminate successfully the in-
stabilities in the numerical solutions of the coupled-channels
differential equations for these reactions.

In previous studies, special treatments of the potential, such
as a large diffuseness parameter [15], a very deep potential
plus a small radius parameter [52], or a repulsive core are
needed to explain these experimental data related to the
considered nuclei [16,29,56]. By means of our approach, we
found that the fusion cross sections can be still described well
with a simple Woods-Saxon-type potential. In particular, the
fusion excitation function of the ®Ni4 Mo reaction is
remarkably well described with the use of the standard AW
potential. On the other hand, the fusion excitation function
of the 3¢S+ *8Ca is described well by fitting of the Woods-
Saxon potential parameters, without introducing the repulsive
cores. It is demonstrated that the deep sub-barrier fusion cross
sections are very sensitive to the potential pocket profile. The
deep sub-barrier fusion cross sections can be used as a sensi-
tive probe to explore the inner shape of the potential pockets.
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The 1A{, 3F’, 1E', 34/, 14;, 3A; representing the ground and the five excited states, which have the common
character of being symmetrical with respect to reflection on the plane of the equilateral triangular Hf molecule,
are determined by an original three center wave function constructed by the use of the irreducible re-
presentations of the D3, point group. In contrast to past large one center or linear combinations of atomic orbitals
functions, our model has the advantage of being well adapted to all internuclear distances, with limited number

of basis functions including the electron-electron term. Our functions satisfy, by their nature, the triangular
geometry of the molecule and thus permit the study the asymptotic behavior of the potential energy curves of the
fundamental and excited levels for which, new experimental and theoretical results are needed to confirm as-
tronomical observations. The results of this work and the implementation of the computational techniques
employed opens the way to further studies on complex three center systems.

1. Introduction

H7 is the simplest existing polyatomic molecule, which provokes
interest in different fields of chemistry and astronomy. It is most stable
in the equilateral triangular configuration [1]. It has the particularity of
dissociating both when an electron is attached or detached from it. It is
the subject of many studies concerning specially the dissociative re-
combination with electrons [2,3], or the observations of its vibration-
rotation band [4]. It plays also an important role in the domain of the
study of magnetic and ionospheric properties of planets [5,6].

It is evident that, like helium and H, the smallest two electron
systems, for which electron-electron correlation can be evaluated and
understood both theoretically and experimentally (e.g. in the determi-
nation of the cross sections of the double ionization [7-9], the study of

* Corresponding author.
E-mail address: boghos.joulakian@univ-lorraine.fr (B.B. Joulakian).

https://doi.org/10.1016/j.cplett.2020.137304

the electronic structure of H is one of the fundamental challenges of
molecular physics. As the smallest three center molecule existing
naturally, it has been largely studied in the past [10-16]. These cal-
culations employ wave functions constructed by linear combinations of
atomic orbitals (LCAO), Gaussians, or one center basis functions and do
not include, in contrast to the present work, the electron-electron cor-
relation term separately. We can mention here the original model
presented in [17,18] in which the singlet and triplet excited states of H
are studied by the application of the “diatomic in molecules” method,
employing a product of diatomic and atomic orbitals. Although these
different types of orbitals succeed in producing comparable results for
intermediate internuclear distances by employing very large Gaussian
basis functions [16], still some disagreements exist between them and
verified potential energy curves are needed specially for large
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internuclear distances.

In recent years, Berencz type functions [19] have shown their effi-
ciency in the treatment of many center electronic structures [20,21]. In
this method, the LCAO applied to the diatomic cases, is replaced by a
products of atomic orbitals centered on each nucleus. For the three
center case, this model was successfully applied to the fundamental
electronic level of HY [22]. Recently, we have introduced, for the three
center two electron case, the electron-electron correlation to this type of
functions and applied it to the determination of the multiply differential
cross section of the simple ionization of H} by electron impact [23].

The aim of the present paper is to show that, the above mentioned
three center model, which contains, by its nature, the equilateral tri-
angular symmetry, presents many advantages, as it permits the appli-
cation of the group theoretical irreducible representation of the Ds,
point group to the construction of the wave functions of the first five
excited states of HI, which are symmetrical with respect to reflection on
the plane of the molecule, and permits to identify the dissociation limits
of each level, and produces, with a small basis, compared to that ap-
plied in [16] for example, quite good accuracy for the energy values of
the different levels. We believe also, that this wave functions will bring
as in [23] theoretical support in the determination of cross sections in
electronic excitation and ionization experiments. From a more practical
point of view, we can say that the tackeling of the analytic and nu-
merical computational difficulties related to the two-electron three
center problem in this work, opens the way to further developments in
more complex three center systems, that we intend to study.

2. Theory

The Hamiltonian, which describes, for fixed nuclei, the two elec-
trons of the H} ion (see Fig. 1) is written in atomic units as follows

Chemical Physics Letters 746 (2020) 137304

2 P 1)

with ry=1—-a,rp=1—b, 1t =1,— ¢, 1, =1 — 1. Here r; gives
the position of the j-th electron, and a, b, ¢ the position vectors of the
three protons in a body fixed system of reference with the following
coordinates:

a= 701,00,
_ P 1 V3
b—f(—g, 7,0),
— (1 3

with p representing the mutual internuclear distance between the three
nuclei.

The computational schemes, which will deliver the wave functions
and the energy values of the desired levels are based on the Rayleigh-
Ritz variational functional with the electronic energy given by

_ (¥(a, b, c, i, n)IH¥(a, b, ¢, 1, )
(¥(a, b, c, 1, n)I¥(a, b, c, 1, 1)) ’ 3)

[20)

where Q represents the energy levels !4/, 'E’, 3E’, 34/, 'A;, *A, under
consideration and ¥(a, b, c, r;, 1,) the corresponding trial wave func-
tion. We admit that these functions must be orthogonal

(%(a, b, c, 1, 1,)[¥y(a, b, ¢, 1, 1)) = Sy, 4

and satisfy the symmetry properties of the Ds;, group.

2.1. The seven-parametric basis functions

Let us first form the bi-electronic correlated basis functions, with
which we will construct the variational wave function ¥,(a, b, c, r;, 1)

Fig. 1. The positions of the three fixed protons a, b, ¢ and the two electrons e}, ¢, in a body fixed frame (x, y, z) with the origin on the barycenter of the equilateral

triangle, and the z axis perpendicular to plane of the molecule HJ.
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of Eq. (3) for the different levels. We consider, as in [22], a combination
of functions constructed by a product of two Berencz type [19] mono-
electronic functions, adapted each to the equilateral triangular system
and an electron-electron correlation term which fits in very elegantly.
This forms the following seven-parametric function

x(a, b,c,n, 1)

= exp(—aihq — GHy — WGHe — A4l — Ashyp — Aelae — A7H2). 5)

Here the nonlinear «; parameters will be determined by the varia-
tional method described below. The wave function of a given state
¥(a, b, ¢, 1, 1) of Eq. (3) must include all the permutations with re-
spect to the three centers a, b, c, and between electrons 1 and 2, (see
Fig. 1). We will thus consider the following twelve functions, which
have the structure of the one given in (5) representing all the permu-
tation cases:

x=x@b,crnmn), y=x.cbnmn),
X =x(c,a b ), x,=xbacnmn),
X =x®b,c,a ), y,=x(barn,r), (6)

X =x@,b,c, 1), =x@,cbmnmn,
Xo =x(c,a, b, r, rl)a)(lo =x(b,a, c, 1),
X =xM,c,a, 5,1y, =x(,b,anmn).

Our task will be to find the appropriate combinations of these
twelve functions for each of the states '4;, 3E’, 'E’, 34/, '4;, 3A; defined
by the irreducible representations of the D3, point group.

2.2. Method of construction of the ground and excited state wave functions

The spin part of the two electron wave function being eliminated,
the space wave functions of the singlet states such as '4;, 'A;, etc. must
be symmetrical with respect to exchange of electrons. Those of the
triplet states, such as 34,, 34;, etc. must be antisymmetrical with respect
to this exchange. So we can write the general conditions for the per-
mutation of the two electrons:

Yiy(a, b, ¢, 1y, 1) = +¥15(a, b, ¢, 1, 1), %)
Wiy(a, b, ¢, 1, n) = —¥3(a, b, ¢, n, 1y). (8)
Let us define two constants

o = 0; for even states,
1= 1; for odd states, 9

which will characterize symmetry with respect to exchange of any two
centers, and

_Jo; singlet states,
2= 1; triplet states, (10)

which will characterize the spin state.

Using these constants, let us associate the twelve basis functions X
which have in common the exchange between the centers and c. This
will give us the following set of three new functions:

b =1+ D + (1725 + (=17,
1[)2 =x + (_1)51){4 + (=1)* [Xg + (_1)51){10];
¢3 =Xs + (_1)01)(6 + (_1)52 [)(11 + (_1)01){12} (11)

We can now define the wave function for a given state Q in the
following form

Y, b, ¢, 11, 1) = c1oP; + Co, + C30Ys (12)

Here c;,-s correspond to the coefficient of ¢, for the state Q.
Let us apply the circular permutation (a, b, c) — (b, ¢, a) to Eq.
(12). We will then obtain a new combination for the same CigS

Chemical Physics Letters 746 (2020) 137304

Y, c,a, 1, 1) = ClQ$1 + CZQ{IEZ + C30¢~3, 13)

where the ¢; correspond to the association of the twelve basis functions
having in common the exchange between a and c such that

lpl =X + (_1)01)(4 + (_1)02 [X]] + (_1)01)(]0],
P =x + (D7 + (1206 + (-1, ],
=1 + (D)%% + (=171 + (=1)7x]. (14)

Finally a third circular permutation is possible (a, b, ¢) — (c, a, b),
which will result into

\PQ(C) a,b,nn= ClQ{b\l + 02Q$2 + C3Q1:b\3; (15)

with
D= + (“17x + (=17 [y + (—1)%,],
By = x5 + (1% + (—1)% [, + (=111,

~

Py =1 + (=1 + (D725 + (=1)7 ], (16)

where the exchange is between a and b.
By adding the three functions of the Eq. (12), (13) and (15), we
obtain the following relation

o =%, b,c,n, 1) +¥%(Db,c ann+¥%(C, ab,nr)
= (CIQ + €20 + C3Q)
2
X Zk=o Do + G000 + (CD2 0 + D 0 1)
= (C1p + Cop + C3p)( Wy + Py + P). a7)
This is a general relation valid to all the levels. Our aim during the
minimization process is to determine the coefficients c;, and the para-
meters a; for each level Q defined above. Before passing to the varia-
tional determination, let us first exploit the symmetry properties of

equilateral triangular system to simplify the relations between the
coefficients ¢;, of each state.

2.3. The symmetry properties of the ground and excited states
Let us begin with the A/ states, for which any permutation of the
centers should leave the wave function invariable, such that
Wa(a, b, ¢, 1, r) = perm, ;,  Pa(a, b, ¢, 1, 1)
_ 1=
=§:.Al/ :C1A1¢1+CZA1'¢2+ C3Ailp3. (18)
Here perm,, . is the permutation operator for the three nuclei
(a & b < c). Introducing this relation in Eq. (17) we can show that the

coefficients of the 'A; and 3A; states (i.e. for o; = 0 in Eq. (11)) must
satisfy the condition

Cla = Couy = Caap 19)

For the A, states, the wave functions are antisymmetric with respect
to exchange of the two nuclei, such that

Yya, b, e, m,n)=—-Pya, c b, n,n) =Yy(c a b o
= —Wy(c,b,a, 1, ) =%yb,c ann =-Yyub,a,crnmn).
(20)
This means that
Y@, b, c,m,n)=%yb,c,a nn) =%y ab, )
= %EAZ’ = Cipythy + Copthy + Cap s 1)
Comparing with Eq. (17) corresponding to !4, and 34, (i.e. foro; = 1
in Eq. (11)) we can find that
Clag = 2y = Gay (22)

Let us pass to the E’ states. The singlet 'E’ and the triplet 3E’ states
are doubly degenerate, such that they are symmetric or antisymmetric
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with respect to the exchange of any two nuclei. We will designate these
states by e!E’ and e3E’ for the symmetrical (even) cases, and by o'E’ and
03E’ for the antisymmetrical (odd) cases, such that:

Yi(a, b, c,n,n)=+%,@,cb ) =+%(a, b,cn 1), (23)

¥iz(a, b, c,n, 1) =-%i(a, c b nn)=+¥%y@,b,cn ),

249
Yig(a, b, c, 1, 1) =+%3(a, c, b, n)=-%(a, b, c, ),

(25)
Yip(a, b, c,n, 1) =-%5p@,c b nn=-%yp@,b,c,n n).

(26)

We have demonstrated in the A (Egs. (A.9), (A.13)) that

Ep=¥Yp(a,b,c,n, )+ ¥e(,c ann + ¥e(,a b nn) =0

27
Using Eq. (17) we can write
Ep = (c1p + c2p + €3)@ + 9, + ) =0, (28)
which imposes the condition
Cly + Cap + c3, = 0. (29)

Till now, we have studied the case, where we had a basis function
with 7 parameters Eq. (5). We will now extend our choice to additional
7 nonlinear parameters a;, with indices i = 8, ...,14. This will create
twelve additional functions X with j =13, ..,24, thus three more
functions like in Eq. (11)

¢4 =X13 + (_1)51)(14 + (_1)62 [){19 + (_1)51)(20]’
zps =Xs + (_1)01)(15 + (_1)02 D(zl + (_1)01)(22]’
zlbﬁ = X7 + (_1)01)(18 + (_1)02 D{23 + (_1)‘71}(24]) (30)

with which we can define our extended wave function for a given state
Q in the following form

6

Y, b, c,m, 1) = Cio¥P;-
,; ¢ (31

Applying the symmetry conditions to the new function we can show
for the complete set of coefficients we must impose the following
conditions

Cry = Coay = C3pp Capy = G50 = Cogp

Clay = €24y = Caap Cany = Csay = Cony

Cip + Cop + €3, =0,

Cap + Csp + Cop = 0. (32)
Table 1
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3. Numerical methods

After substituting the expansion Eq. (12) for the simpler seven-
parameter case, or Eq. (31) for the extended case into the variational
functional Eq. (3) and minimizing, we obtain the generalized eigen-
value problem

Aqcq = £9Boco,  €4Boco = 1. (33)

Here A, and B represent symmetric matrices with matrix elements
respectively

Ay = (BIHIY), By = (1), (34)

o = (€10: €20 €30)" (0r €@ = (€195 C20» €3 Cag» €5 Coo)” for the ex-
tended case) represent the eigenvectors. Using for each state Q the
conditions of Egs. (19), (22) and (29) (or (32) and applying linear
transformation of the Eq. (33), we reduce the matrices and obtain the
following problem
Ao€q = cBoCo.  EpBoCo =1, (35)
with €, = (c1)" (or € = (14, €ao)T) for A’ states, and €, = (c14, 20)"
(or €y = (clO, Cags Cago CSQ)T) for E’ states.

To minimize the energy ¢, with the variation of the parameters «;,
we have used a sequential quadratic programming method for several
variables [24-26] and the code E04UCF from NAG Library [27] with
additional constraints on the parameters:

o+ o+ a+a; >0,

oy + as+ ag+ a; >0,

ag + g + o + g > 0,

ajn + oqz + g3 + agg > 0. (36)

We have also performed the optimization as in our previous paper
[23], where we have studied only the fundamental state, by calculating
the first derivatives with the parameters of the energy:

aﬂ = ’65(&‘0 - EQaBQ)EQ.
aO{i acxi 50@ (37)

All 6D integrals, which appear in the functional of the energy were
calculated numerically using a globally adaptive subdivision scheme
[28-30] and a code Cuhre [31]. All numerical integrations were done
with an absolute accuracy 107° — 1077,

4. Results and discussion

As we mentioned above, the aim of our present work is, among
others, to implement the application of a new three center two electron
correlated wave function, described above, for the triangular equi-
lateral case represented by the Hf system. The motivations for such a
work are multiple. These are, for instance, the need for observation of

The energies values (in au) of the ground '4; and excited 3E’, 'E’, A/, 'A; and 3A, states of HY for internuclear distance p = 1.65 au. The second row corresponds to
results obtained with seven-parameter functions and the third row to those obtained by fourteen-parameter functions. The lower rows show existing results from the
references [12,15,16,22,23] (where [12] at p = 1.63332 au and [23] with 6 parameters function at o; = 0).

1y 3 3] 1a; A3
with 7-parameters —1.340 352 —0.775 600 —0.609 823 —0.498 901 —0.186 083 —0.028 621
with 14-parameters —1.342 520 —0.792 082 —0.626 730 —0.510 758 —0.209 148 —0.035 843
[12] —0.776 695 —0.622 277 —0.496 986
[15] —1.342 230 —0.632 050
[16] —1.343 835 —0.633 512 —0.511 569
[22] —1.340 345

[23] —1.331 48
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Table 2
Optimal seven-variational parameters a, ...,a; for the ground 'A; and excited 3E’, 1E’, 34/, 1A; and 3A; states of HY for p = 1.65 au.
14/ 3g 1 34/ 144 344
a —0.026 442 0.240 329 0.535 125 0.080 623 —2.028 037 0.436 381
@ 0.211 880 0.504 412 0.137 175 -0.270 522 1.024 753 —0.229 632
a 1.409 787 0.689 107 0.994 871 0.794 331 1.136 674 0.858 861
a 1.068 443 0.241 417 0.901 676 1.181 098 0.561 273 0.990 903
as 0.122 722 0.773 526 —0.044 017 0.099 545 0.552 654 0.157 249
s 0.603 098 0.459 867 0.042 509 0.369 651 0.552 356 -0.193 064
@ -0.212 311 —0.249 522 —0.166 339 —0.088 500 -0.014 324 —0.084 081
given on the las row in [23] for a; = 0.
Table 3 Now in the aim of verifying the process of convergence and trying to
The coefficients ¢;, ¢; and ¢; corresponding to each energy level. approach the results of [16] which uses a very large basis we ad-
ditionally calculated the ground state !4, level the energy e1 1y with
“ 2 © twenty-one-parameters and obtained e1,,=-1.343 083 au. This shows
1 0.220 519 o a that our procedure converges and brings the agreement up to four di-
gits. Using the extrapolation formula given in [32]
even 3E’ 15.23 642 -5.857 385 —a-c c
dd 38’ 2.036 528 —14.29 091 —a-c e =e1,,(N) + —,
° By = WM+ 55 38)
even 1B’ 0.376 844 —0.209 584 —a-c
odd 'E’ 0.024 434 0.314 108 “a-a we will define the convergence rate § with respect to the number of the
347 . N .
Al 0.061 310 @ a basis set N. Here ef is the extrapolated value of the energy, i.e.
14 0.078 908 a1 a . 1 . . :
o 0.170 436 o o N — oo, e(N) is the energy for a given N basis set, and C is the

electronic transitions in interstellar media, where this ion is present
abundantly, more, the fact that, like atomic helium and diatomic Hy,
triatomic HY is a two electron system in which, electron—electron cor-
relation is identifiable, because it is the principal cause of many photo-
excitation effects such as the photo-double-ionization of this type of
targets. Our work is also motivated by the possibility that these three
center calculations develop benchmark procedures extendable to more
complex three center molecules. We seek also to verify our variational
procedure and the numerical calculations of six order integrals invol-
ving the two bound electrons in the triangular coulomb field.

We begin by presenting, on Table 1, the energy values of the ground
1A] and excited 3E’, 'E’, 3A{, 'A; and 3A; states of H} for the ground state
equilibrium internuclear distance p = 1.65 au. On this Table the second
row shows the results obtained by the wave function of Eq. (12) having
seven-parameters, while the third row shows the results obtained by the
expression of Eq. (31) having fourteen-parameter functions. We observe
that the extended fourteen-parameter (Eq. (31)) wave function im-
proves the results. These A/, 3E’, E’ and 34/ are in good agreement (up
to three digits after the decimal point) with the results of [12,15,16,22].
The influence of the electron—electron correlation term can be seen by
the comparison of the energy values of '4;, level of this table with those

constant. We have for N = 1 the result of the seven-parameter case with
12 basis functions, for N = 2 that of fourteen-parameter case with 24
basis functions and N = 3 that of twenty-one-parameter case with 36
basis functions. e‘fjll,, B and C are obtained from the system of nonlinear
problem (38) at N=1 — 3:

€, = —1.34379%6au, f =1.429876, C = —0.003447.

(39

One can see that the extrapolated value of the energy is very close to
the result of [16].

In Tables 2 and 3, respectively, we display the optimal seven-var-
iational parameters «;, i = 1, ...,7 for the ground and excited states
energies under consideration, and the corresponding coefficients
Cig» i =1, ..,3 including odd and even excited states of 3E',IE’. In
Tables 4 and 5, we display the same cases as in Tables 2 and 3, but for
the optimal fourteen-variational parameters o, i = 1, ...,14 and corre-
sponding coefficients Cigp i = 1, ...,6. We must mention here that some
parameters «; in Tables 2 and 4 have negative values. This is quite
normal, as long as the conditions of Eq. (36) are satisfied. The negative
values a; and a4 can be particularly reasonable as the distribution of
the two electrons must have relatively higher density for large r,, such
that they have higher probability to be apart, because of the two
electron repulsion potential 1/#5,.

To compare further our results with existing ones. We consider

Table 4
Optimal fourteen-variational parameters aj, ..., a4 for the ground 'A; and excited 3E’, 'E’, 3A{, 'A; and 3A; states energies of H} at the for p = 1.65 au.
14/ g g 34/ 145 345
o 0.115 567 0.083 428 0.208 380 1.260 608 1.091 554 0.210 296
a 0.136 146 —0.009 707 0.223 048 0.233 957 —0.906 230 1.241 690
a3 1.499 119 0.975 277 1.280 699 0.215 901 0.142 430 0.317 057
ay 1.124 039 0.200 127 0.869 745 0.262 064 0.558 355 0.739 985
as 0.093 855 1.216 321 0.042 846 0.509 664 0.550 752 0.372 041
ag 0.587 165 0.248 488 —0.023 289 0.053 417 0.554 221 0.041 675
az —0.467 799 —0.103 159 —0.117 594 —0.026 991 —0.018 901 —0.057 578
ag 0.595 668 1.239 064 0.297 544 0.243 724 0.557 903 0.441 187
ag 0.084 919 0.209 395 0.098 634 0.207 222 0.551 828 —0.065 797
alo 1.142 581 0.298 909 1.314 096 1.251 002 0.554 588 0.808 231
a1 1.507 875 0.606 583 0.619 055 0.538 336 1.063 816 1.0302191
a 0.126 634 0.645 124 —0.359 666 0.102 680 —0.889 231 0.165 134
a3 0.136 727 —0.167 738 0.659 638 0.311 287 0.130 554 —0.032 221
a4 —0.511 026 —0.084 233 —0.214 367 —0.013 325 —0.019 960 —0.087 467
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Table 5

The coefficients ¢, ¢, 3, ¢4, ¢s and c¢ corresponding to each energy level (see the Table 4.
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c1 ) c3 cq cs Ce
] 1.274 131 o o —1.069 841 ¢ ¢4
even 3E’ 0.060 304 0.273 509 —a-oc 0.410 264 —0.035 898 —cyi—cs
odd 3E' 0.349 790 —0.228 055 —a-c 0.196 415 —0.451 523 —cyi—cs
even ' —0.289 907 0.073 125 —c—c 0.023 981 0.125 188 —c4—cs
odd ' 0.082 955 —0.292 542 —c—c —0.158 406 0.099 972 —c4—cs
34/ 0.829 633 a a -1.052 157 ¢ ¢y
14 —2.149 799 a a 2.236 809 ¢ ¢y
34} 1.064 310 a a 0.719 721 ¢ ¢
Table 6
The ground '4; and excited 3E’, 'E’, 34/, 'A; and 3A; states energies (in au) of HY versus the internuclear distance p.
P A g’ g’ 3A{ 145 3A;
1.650 —1.342 520 —0.792 082 —0.626 730 -0.510 758 —0.209 149 —0.035 843
1.900 -1.329 584 —0.885 479 —0.716 543 —0.574 405 —0.287 441 —0.255 484
2.200 -1.299 819 —0.953 837 —0.787 186 —0.616 226 —0.343 498 —0.449 428
2.750 —1.232 880 -1.013 051 —0.865 638 —0.643 901 —0.392 400 -0.673 110
3.052 -1.197 553 —1.026 233 —0.894 834 —0.645 996 —0.404 557 —0.751 866
3.350 -1.165 897 -1.032 265 —0.917 646 —0.644 671 -0.412 183 —0.809 932
4.500 -1.077 293 —1.028 068 —0.969 321 —0.627 978 —0.489 352 —0.930 539
5.500 —1.036 820 —1.016 830 —0.987 624 —0.638 934 —0.533 256 -0.971 017
7.000 -1.011 227 —1.006 228 —0.997 107 —0.668 777 —0.567 851 —0.992 534
00 . and the second on the 2s giving a total energy of — 0.5 — 0.125 au. Now,
' we observe on Fig. 2 that the curves of the levels A/, 3E’, IE’ and 34,,
| are consistent with the curves of [14] (see their Figures IV and V in
-0.2 [14]), and have a common asymptotic limit — 1.0 au. This shows that at
] large p the wave functions of these states which have in our model
-0.44 conserved their Ds;, character are still valid at the dissociation limit of H
> 1 (1s) + HQs) + H™.
g -0.64 What concerns the state 3A; which should normally dissociate into H
u‘i ] (1s) + H(2s) + H* has a particular behavior above p = 4 au. It doesn’t
0.8 continue to the limit — 0.5 — 0.125 au but it goes down (see please
] Fig. 2). In fact the potential curve is comparable to that of [12,14]
-1.04 which is stops at the distance p = 4 au. We believe that in the equi-
1 lateral triangular D, case, which we are adopting in our calculations
-1.24 even for large p, this state possesses two possible dissociation cases
] which could satisfy this configuration, one being the H(1s) + H(2s) +
-1.4 j T é T é T ;1 T é T é T y H* which could be the most probable, and the second the H(ls) + HJ

Fig. 2. Calculated potential-energy curves for the ground 'A; and excited
E', 1B, 34/, 'A; and 3A; states energies of H versus the internuclear distance p.

particularly the results given in [15], which we think is the only re-
ference that gives numerical results for singlet states of H¥ for different
internuclear distances p. The comparison is made on Table 6. We ob-
serve that the singlet !4/, 1E’ states energies are in good agreement (up
to three digits after the decimal point) with results of [15] (see their
Table III, concerning the D3, symmetry). What concerns the singlet ‘A,
state energy for which we have some inconsistencies with [15] at
p = 2.75 au, we will analyze the situation in more detail below. Also, we
can observe that the minimum of the !E’ state energy is comparable
with the results of Alijah et al. [33].

Let us now pass to the potential-energy curves. We have two pos-
sible asymptotic limits for large p shown on Fig. 2. The lower one
corresponds to the energy of a system constituted by two separate hy-
drogens having their electrons on the 1s level. The second higher level
corresponds to the same system, but with one hydrogen on the 1s level

with large p , which has a lower energy limit than that of HQ1s) + H(2s)
+ H* system. The existence of these two dissociation channels can
explain the form of the potential energy curve of this level, which de-
creases after p = 5 au.

5. Conclusion

In this paper we construct original three center correlated wave
functions necessary for the theoretical study of the electronic structure
of the ground and the first five excited states of the equilateral trian-
gular Hf, which have the common character of being symmetrical with
respect to reflection on the plane of the molecule. Our functions which
possess by their nature the triangular symmetry, include electron-
electron correlation and respect the irreducible representations of the
D;;, point group. Our results concerning the electronic energy values of
these levels, which are necessary to guide future experimental ob-
servations, confirm and complete the existing results which are ob-
tained by large basis functions. Our functions permit also the de-
termination of the asymptotic behavior of the potential energy curves,
which show the possible dissociation fragments for this particular
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equilateral symmetry. The three center two electron integrals are de-
termined by applying new numerical and analytical approaches which
open the way to further applications of this type of functions to more
complex three center molecules.
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Appendix A. Demonstration of the Eq. (27) for the E’ states

We want to show that

¥(a,b,c, 1, ) +¥(c,a, b, +¥bcanmn =0
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(A1)

For the sake of simplicity, let’s represent the wave function of the two electron equilateral triangular system ¥(a, b, ¢, 1, ;) in this form
¥(a, b, c, ¢;, $,) where we show only the azimuthal angles of the two electrons. The three centers being given in Eq. (2). We can verify that for this

equilateral triangular form
¥(c, a, b, ¢1’ ¢2) = "P(a, b, c, ¢1 - 277[, ¢2 - zTﬂ)x

Wb, c,a, ¢, 4,) = ¥(a,b,c, ¢ + 2, 4, + 7).

(A.2)

This permits us to write in Eq. (A.1)in the following more compact form

2

2
Z up(a, b,c, ¢, + s?ﬂ, ¢, + s?) =0.

s=—1

(A.3)

Let us make use of the fact, that any square-integrable function f (6;, ¢,, 6, ¢,) on the unit sphere, can be expressed as a linear combination of the
product of the real spherical harmonic functions Y, (61, ¢,) and Y, ., (65, ¢,):

o h b
f(el’ ¢1’ 62’ ¢2) = Z Z Z ﬁ1mllzm2 Y11m1 (61’ ¢1)Yizmz(92, ¢2)

hb=0 m=—l my=—b

This can also be written explicitly

f(el, ¢1, 92: ¢2)

(A.4)

) h 1]
N
= 20 22 i 61 6)c0smd, — mag) + & pm, 61, 62)8in (mypy — My8,)].

hb=0 m=—l my=—b

A.1. The case of the even E’ state wave function

(A.5)

Let us first consider the even E’ state wave function. It should be symmetrical with respect to the following inversion of the signs of the azimuthal

angles:

Y(a, b, c, ¢, $,) = ¥%(a, b, c, —¢;, —¢,).

(A.6)

Using the development of Eq. (A.5), we can express the wave function in the following form where the term with [sin(m;¢;, — m,¢,)] does not

appear

eS)

Y(a, b, c, ¢1’ ¢2) = Z

h,b=0 moq (my1—m3,3)#0

R
Dt imy ity Jumitms 7o 12s 61, B2)c0s(muy = may).

(A7)

In this decomposition terms with mod(m; — m;, 3) = 0 should be excluded to insure the orthogonality of the wave functions ¥(a, b, c, ¢,, ¢,)

and ¥y (a, b, c, ¢,, $,).

Now for the terms for which mod(m; — m,, 3) # 0 we have the following relation.

21: cos (ml (451 + sz?ﬂ) - m (¢2 + 52?7-:)) =0.

s=-1

(A.8)

From here, taking into account the symmetry conditions (A.2), we deduce the relation
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1
Z ‘I’e(a, b,c, ¢, + s%", ¢, + s%ﬂ)

s=—1

=%, b, c, ¢, ¢,) + U(c,a, b, ¢, $,) + %(b, c,a, ¢, 8, =0. (A.9)

A.2. The odd E type state wavefunction

Finally we consider the odd E’ state wavefunction, antisymmetric with respect to the inversion of the sign of the two azimuthal angles
¥(a, b, c, ¢, ¢,)=-%(@a,b,c,r, —¢, —¢,). (A.10)

As in the even case, we can write the odd wavefunction in terms of the development of Eq. (A.5) including now the sin(m; ¢, — m,¢,) part

%@, b, c, ¢, d)= D, Dt tmaicty. Stmiom (s T 61, B2)sin(mupy — myg,).
0,2=0 " y10d (my—m3,3)#0 (A.11)

This decomposition also does’t contain terms with mod(m; — m,, 3) = 0, since the wavefunctions ¥(a, b, ¢, ¢,, ¢,) and ¥ (a, b, ¢, ¢,, ¢,) are
orthogonal. Now for mod(m; — m,, 3) # 0 we should have

1

Z sin(m1 (qbl + szg) - m (¢2 + s%r)) =0.

ot (A12)
From here, taking into account the symmetry conditions (A.2), we have relation
1
> W(a b, ¢ + 57, ¢, +57)
s=—1
= qlo(a’ b, c, ¢17 ¢2) + ‘I{J(c’ a, b, ¢1: ¢2) + lI/O(b7 C a, ¢1’ ¢2) =0. (A.13)
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NUMERICAL SOLUTION OF BURGERS' EQUATION BY LOCAL
INTEGRO SPLINE
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Abstract: Burgers' equation is an important non-linear parabolic partial
differential equation. Increasingly, this model is used in applications such as fluid
dynamics, turbulence and others. In this talk, we examine some practical
numerical methods to solve initial-boundary value PDE-s based on the local
integro splines. Higher-order accurate hybrid schemes for the numerical solution
Is presented. The accuracy of the proposed schemes is demonstrated by some test
problems.

MAXIMIZING THE SUM OF RADII OF BALLS INSCRIBED IN A
POLYHEDRAL SET

R. Enkhbat and J. Davaadulam
National University of Mongolia, Mongolia
e-mail: jamsran_dd@yahoo.com

Abstract: The sphere packing problem is one of the most applicable areas in
mathematics which finds numerous applications in science and technology. We
consider a maximization problem of a sum of radii of non-overlapping balls
inscribed in a polyhedral set in Hilbert space. This problem is often formulated
as the sphere packing problem. We extend the problem in Hilbert space as an
optimal control problem with the terminal functional and phase constraints for
each moment. This problem belongs to a class of nonconvex optimal control
problem and application of Pontriyagin's maximum principle does not always
guarantee finding a global solution to the problem. We show that the problem in
a finite dimensional case for three balls(spheres) is connected to well-known
Malfatti's problem [1]. Malfatti's generalized problem was examined in [2,3,4] as
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