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Decomposition of scattering phase shifts of coupled-channels systems in the complex scaling method
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1School of Engineering and Applied Sciences and Nuclear Research Center, National University of Mongolia, Ulaanbaatar 210646, Mongolia

2General Education, Faculty of Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
3Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki 567-0047, Japan

4Tokuyama College, National Institute of Technology, Yamaguchi 745-8585, Japan
5Canon Medical Systems Corporation, Otawara 324-8550, Japan

6Nuclear Reaction Data Centre, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan

(Received 24 May 2021; accepted 16 July 2021; published 30 July 2021)

The decomposition of scattering phase shifts in single-channel systems is extended to coupled-channels
systems in the complex scaling method. The present method describes the contribution of the resonant states
to the phase shift separately from the background in each channel phase shift of the coupled-channels system.
We apply this method to the (3H +p) + (3He +n) model for 4He, and show that the decomposition of phase
shifts in coupled-channels systems provides useful information about the structure of scattering states.
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I. INTRODUCTION

In the spectroscopic study of unstable nuclei, it is necessary
to investigate the many-body resonances observed above the
many-particle decay thresholds, because the unstable nuclei
barely have bound states and most of the excited states are
resonances [1]. Even to understand weakly bound states in
unstable nuclei, such as a neutron halo nuclei, we need to in-
vestigate couplings with continuum states because of a strong
coupling between them. The complex scaling method (CSM)
[2] has been applied successfully to describe many-body res-
onant state together with weakly bound states, and we have
also developed it as a powerful framework to understand the
scattering phenomena of many-body systems [3–5].

In our previous paper [6], we proposed a method to decom-
pose the scattering phase shift and cross section into resonance
and background contributions in single-channel systems with
the CSM. In the CSM, by solving an eigenvalue problem in
a similar way as for the bound states, many-body resonant
states are obtained as eigenstates with complex energies in
wedge regions formed by the real energy axis and 2θ lines
(rotated branch cuts) on the complex energy plane. At the
same time, continuum states are obtained as being discretized
along the rotated 2θ lines [2]. Using the bound, resonance,
and continuum spectra obtained in the CSM, we can describe
the scattering phase shift [7], and extract resonant state con-
tributions from the background in the scattering phase shift
and cross section. However, the decomposition method of
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the phase shift has not been established in coupled-channels
systems [8], even for generalizations to coupled-channels sys-
tems that have long history [9,10].

In the present paper, we show that it is possible to express
the phase shift of coupled-channels systems in the form of the
spectral decomposition using the CSM. This method is very
promising in investigations of the coupled-channels effects in
multichannel resonances, which have been known to play an
important role in unbound nuclei [11].

In Sec. II, we review the CSM and the decomposition
of the scattering phase shift in single channel systems, and
show the extension to coupled-channels systems. In Sec. III,
we apply the present method to the (3H +p) + (3He +n)
coupled-channels system for 4He, which has been discussed
in previous papers [8]. The obtained results for 3P1 and 3P2

states show good agreement with the previous calculations
and the experimental data, but we find a discrepancy for the
3P0 state. In Sec. IV, we discuss the decomposed phase shifts
of the 3P0 state. The relation between two resonant poles
of single-channel and coupled-channels systems by changing
the strength factor f for the coupling potential is considered.
Finally, in Sec. V, the summary and conclusion will be given.

II. DECOMPOSITION OF THE PHASE SHIFT

A. Complex scaling method

We briefly explain the complex scaling method (CSM) pro-
posed by Aguilar, Balslev, and Combes [2]. They introduced
the transformation (dilation) U (θ ) with a scaling parameter θ

for the radial coordinates ri and momentum ki of all particles
i = 1, . . . , n (n is the number of particles) as

U (θ )riU
−1(θ ) = rie

iθ , U (θ )kiU
−1(θ ) = kie

−iθ . (1)
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The Schrödinger equation

H�(r1, . . . , rn) = E�(r1, . . . , rn), (2)

where the Hamiltonian H is given as

H =
n∑

i=1

Ti − Tcm +
n∑

i> j

Vi j (ri − r j ), (3)

is transformed as

H (θ )�θ = E (θ )�θ, (4)

where

H (θ ) = U (θ )HU −1(θ )

= e−2iθ

[
n∑

i=1

Ti − Tcm

]

+
n∑

i> j

Vi j
(
(ri − r j )e

iθ
)

(5)

and, for f = 3n − 3,

�θ = U (θ )�(r1, . . . , rn) = ei f θ/2�(r1eiθ , . . . , rneiθ ). (6)

Here we note that the wave function � is the internal one
where the center-of-mass coordinate is excluded, and f is the

dimension of the internal coordinates. Properties of the so-
lutions of the complex-scaled Schrödinger equation [Eq. (4)]
are explained in the so-called ABC theorem given by Aguilar,
Combes, and Balslev [2].

For simplicity, we explain the method for a single chan-
nel case of a two-particle system. Using the basis function
method, where the wave function �θ is expanded with a finite
number of L2 basis functions, we solve an eigenvalue problem
of Eq. (4). For the relative coordinate r, the wave function is
expressed as

�θ (r1, r2) =
N∑

i=1

ci(θ )ūi(r), 〈ūi|ū j〉 = δi j, (7)

where {ūi(r), i = 1, . . . , N} is an orthonormal basis set, and
the coefficients ci(θ ) (i = 1, . . . , N ) are obtained by solving
the following eigenvalue problem:

N∑
j=1

〈ūi|H (θ )|ū j〉cα
j (θ ) = Eα (θ )cα

i (θ ), i = 1, . . . , N. (8)

The ABC theorem indicates that the eigenvalues are obtained
as shown in Fig. 1 and classified as

(Eα,�α (θ )) =
⎧⎨⎩(Eb, �b), b = 1, . . . , Nb; bound states,

(Er, �r ), r = 1, . . . , Nθ
r ; resonant states,

(Ec(θ ), �c), c = 1, . . . , N − Nb − Nθ
r ; continuum states,

(9)

where Nb and Nθ
r are the numbers of bound and resonant state

solutions, respectively. The eigenvalues Eb of the number Nb

of bound state solutions are independent of θ . The resonant
solutions Er , which are obtained in the wedge region between
the positive energy axis and the 2θ line as shown in Fig. 1,
are also independent of θ , but the number Nθ

r depends on
θ because tan−1(�r/2E res

r ) < 2θ for Er = E res
r − i�r/2. The

discretized energies Ec(θ ) of continuum states are θ depen-
dent and expressed as Ec(θ ) = εr

c − iεi
c = |Ec|e−2iθ .

The three-kind solutions of the complex-scaled
Schrödinger equation construct the extended completeness
relation [12]

Nb∑
b=1

∣∣�θ
b

〉〈
�̃θ

b

∣∣+ Nr∑
r=1

∣∣�θ
r

〉〈
�̃θ

r

∣∣+ ∫
Lc

∣∣�θ
c

〉〈
�̃θ

c

∣∣ = 1, (10)

where the tilde˜in bra states means the biorthogonal states
with respect to the ket states, 〈�̃θ

α |�θ
α′ 〉 = δα,α′ , because of the

non-Hermitian property of H (θ ). The integration of the third
term is taken along the 2θ line Lc (rotated branch cut). The
extended completeness relation has been proved for single-
channel and coupled-channels systems [13]. The idea of
explicitly including the resonance states in the completeness
relation by deforming the contour was originally proposed by
Berggren [14], but in the CSM where the deformed contour is

constructed by the 2θ lines, the completeness relation can be
extended to multichannel and many-body systems.

In the case of eigenstates within a finite number of L2 basis
states, the integration for continuum states is approximated by

FIG. 1. The schematic eigenvalue distribution of H (θ ) for a
single-channel system. Continuum states on the 2θ -line are dis-
cretized in the finite basis function method as solid circles.
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the summation of discretized states as
Nb∑

b=1

∣∣�θ
b

〉〈
�̃θ

b | +
Nr∑

r=1

∣∣�θ
r

〉〈
�̃θ

r

∣∣+ N−Nb−Nr∑
c=1

∣∣�θ
c

〉〈
�̃θ

c

∣∣ ≈ 1.

(11)

It has been investigated that the reliability of the approx-
imation of the continuum states is confirmed by using a
sufficiently large basis number of N in the CSM [3,4].

B. Spectral decomposition of the phase shift

The density of states at the energy E is defined as

ρ(E ) = Tr [δ(E − H )] = − 1

π
Im Tr[G+(E )]. (12)

The continuum level density (CLD) 
(E ) is given by


(E ) = ρ(E ) − ρ0(E )

= − 1

π
{Im Tr[G+(E )] − Im Tr[G+

0 (E )]}, (13)

where

G+(E ) = (E − H + iε)−1, G+
0 (E ) = (E − H0 + iε)−1

(14)

are full and free Green’s functions, respectively. The CLD is
also related to the scattering matrix S as shown in Ref. [15]:


(E ) = 1

2π
Im

d

dE
ln det{S(E )}. (15)

In the single-channel case, S = exp [2iδ(E )), the relation be-
tween the CLD and the phase shift is expressed as


(E ) = 1

π

dδ(E )

dE
and δ(E ) = π

∫ E

−∞

(E ′)dE ′, (16)

Applying the extended completeness relation to calcula-
tions of Green’ functions, we obtain


(E ) ≈ 
N
θ (E )

= − 1

π
Im

[
Nb∑

b=1

1

E − Eb + iε
+

Nθ
r∑

r=1

1

E − E res
r + i�r/2

+
N−Nb−Nr∑

c=1

1

E − εr
c + iεi

c

−
N∑

k=1

1

E − ε0r
k + iε0i

k

]
,

(17)

where ε0r
k − iε0i

k (k = 1, . . . , N) are energy eigenvalues of the
free Hamiltonian H0. The approximated CLD, 
N

θ (E ), has a θ

dependence, because basis states of a finite number N are used
for diagonalization of the complex scaled Hamiltonian matrix.
In the calculation, we adopt a sufficiently large number of N
to keep numerical accuracy and to make the θ dependence
negligible in the solutions. Thus, we calculate the phase shift
from 
N

θ (E ):

δN
θ (E ) =

∫ E

−∞
dE ′

[
Nb∑

b=1

πδ(E ′ − Eb)

+
Nθ

r∑
r=1

�r/2(
E ′ − E res

r

)2 + �2
r /4

+
N−Nb−Nr∑

c=1

εi
c(

E ′ − εr
c

)2 + (
εi

c

)2

−
N∑

k=1

ε0i
k(

E ′ − ε0r
k

)2 + (
ε0i

k

)2

]
. (18)

By performing integration of every term, we obtain the
spectral decomposition of the phase shift:

δN
θ (E ) = Nbπ +

Nθ
r∑

n=1

δr +
N−Nb−Nθ

r∑
c=1

δc −
N∑

k=1

δ0
k , (19)

where

cot δr = E res
r − E

�r/2
, cot δc = εr

c − E

εi
c

, cot δ0
k = ε0r

k − E

ε0i
k

.

(20)

C. Coupled-channels cases

A coupled-channels system of two-particle systems is de-
scribed by using the wave function

�θ
α (r) =

nc∑
c=1

hc(r̂)ψα
c (r; θ ),

ψα
c (r; θ ) =

Nc∑
i=1

aα
ci(θ )ūi(r), (21)

where hc(r̂) is the channel function with the channel index c,
nc the number of channels, and Nc the number of basis func-
tions for the channel c. The energy spectra and radial wave
functions ψα

c (r; θ ) are obtained by solving the Schrödinger
equations

H (θ )�θ
α = Eα (θ )�θ

α,

H0(θ )�θ
0α′ = E0

α′ (θ )�θ
0α′ , (22)

for full and free Hamiltonians, H and H0, respectively. The
indices α and α′ are to distinguish the eigenstates. Using the
obtained energy spectra and wave functions, the CLD 
(E )
can be calculated as


N
θ (E ) = − 1

π
Im
∫

dr〈r|
{∑

α

∣∣�θ
α

〉〈
�̃θ

α

∣∣
E − Eα (θ )

−
∑
α′

∣∣�θ
0α′
〉〈
�̃θ

0α′
∣∣

E − E0
α′ (θ )

}
|r〉. (23)

Because 〈�̃θ
α |�θ

β〉 = δαβ and 〈�̃θ
0α|�θ

0β〉 = δαβ for state in-
dices α and β, the CLD can be expressed in a form similar
to Eq. (17), while the continuum states are separated into
solutions obtained on the different 2θ lines starting from
the threshold energy of each channel Eth

n (n = 1, . . . , nc) as
shown in Fig. 2:


N
θ (E ) = − 1

π
Im

[
Nb∑

b=1

1

E − Eb + iε

+
Nθ

r∑
r=1

1

E − E res
r + i�r/2
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FIG. 2. The schematic eigenvalue distribution of H (θ ) for a
coupled-channels system in the complex energy plane. Continuum
states on the 2θ lines (L1, L2, . . . , Lnc ) are discretized in the finite
basis function method as solid circles.

+
nc∑

n=1

ncn∑
cn=1

1

E − εr
cn

+ iεi
cn

−
nc∑

n=1

n0
cn∑

kcn =1

1

E − ε0r
kcn

+ iε0i
kcn

⎤⎦, (24)

where nc1 + nc2 + · · · + ncn = N − Nb − Nθ
r and n0

c1
+ n0

c2
+

· · · + n0
cn

= N . The corresponding phase shift δN
θ (E ) is also

obtained by integration of 
N
θ (E ).

Let us consider the meaning of the obtained phase shift
δN
θ (E ) of the coupled-channels system. The S matrix is

unitary, described as Scc′ (E ) = exp (iδcc′ ), and can be diag-
onalized by using a real orthogonal matrix dq

i (E ):

nc∑
c′=1

Scc′ (E )dq
c′ (E ) = e2iδq (E )dq

c (E ), (25)

where δq(E ) is the so-called eigenphase shift. The eigenchan-
nel |q〉 is defined as

|q〉 =
nc∑

c=1

dq
c (E )|c〉, inversely |c〉 =

nc∑
q=1

dq
c (E )|q〉,

where |c〉 = |hc〉 is the physical channel. Thus, the CLD of the
coupled-channels system, because ln[det{Scc′ (E )}] = i

∑
q δq

in Eq. (15), is expressed as


(E ) = 1

π

nc∑
q=1

dδq(E )

dE
, (26)

and then the phase shift obtained by integration of 
(E ) is the
sum of the eigenphase shifts:

δN
θ (E ) = π

∫ E

−∞

N

θ (E ′)dE ′ =
nc∑

q=1

δq(E ). (27)

In order to calculate each eigenphase shift δq(E ), it is neces-
sary to know {dq

c (E )} for the eigenchannel states.
Next, we consider how to calculate the physical-channel

phase shift δc(E ). In Eq. (23), from 〈hc|hc′ 〉 = δcc′ and
〈ūi|ū j〉 = δi j we have∫

dr
〈
r
∣∣�θ

α

〉〈
�̃θ

α

∣∣r〉 = nc∑
c=1

Nc∑
i=1

[
aα

ci(θ )
]2 =

nc∑
c=1

[
Aα

c (θ )
]2

,

(28)

where Aα
c (θ ) = ∑

i aα
ci(θ ), corresponding to the component of

the channel c in the total wave function, and is a complex(29
number. Therefore, Eq. (23) for the CLD is expressed as


N
θ (E ) = − 1

π
Im

nc∑
c=1

{∑
α

(
Aα

c (θ )
)2

E − Eα

−
∑
α′

(
A0α′

c (θ )
)2

E − E0
α′

}
,

(29)

where [A0α
c (θ )]2 = ∑

i[a
0α
ci (θ )]2 is obtained from solutions

for the free Hamiltonian. Each channel term of the above
expansion describes the physical-channel phase shift:

δc(E ) = −Im
∫ E

−∞
dE ′

{∑
α

[
Aα

c (θ )
]2

E ′ − Eα

−
∑
α′

[
A0α′

c (θ )
]2

E ′ − E0
α′

}
. (30)

When substituting eigenenergies as Eα = εr
α − iεi

α and E0
α =

ε0r
α − iε0i

α , we can integrate on energy E ′ and obtain the fol-
lowing expression using complex variables Aα

c :

δc(E ) = −Im

{
N∑
α

(
Aα

c

)2
[

ln
∣∣E ′ − εr

α + iεi
α

∣∣+ i tan−1

(
εi
α

E ′ − εr
α

)]E

−∞

−
N∑
α′

(
A0α′

c

)2
[

ln
∣∣E ′ − ε0r

α′ + iε0i
α′
∣∣+ i tan−1

(
ε0i
α′

E ′ − ε0r
α′

)]E

−∞

}

= −
N∑
α

{
Im
{(

Aα
c

)2}
ln
∣∣E − εr

α + iεi
α

∣∣+ Re
{(

Aα
c

)2}[
tan−1

(
εi
α

E − εr
α

)
+ π

2

]}

+
N∑
α′

{
Im
{(

A0α′
c

)2}
ln
∣∣E ′ − ε0r

α′ + iε0i
α′
∣∣+ Re

{(
A0α′

c

)2}[
tan−1

(
ε0i
α′

E ′ − ε0r
α′

)
+ π

2

]}
. (31)
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When the coefficients Aα
c are real, the logarithmic terms will

disappear. And when Aα
c =1, we have the same expression as

the single-channel case given in Eq. (19).

III. APPLICATION TO THE 3N + N MODEL

A. 3N + N model for 4He

We apply the present method to the [3H +p] + [3He +n]
coupled-channel model, which was proposed by Teshigawara
et al. [16] to describe the 4He system (isospin T = 0 and 1).
The wave function of 4He with a quantum number q = 2S+1LJ

is expressed as

|�q(4He)〉 = χq
p (r)

∣∣�q
p

〉+ χq
n (r)

∣∣�q
n

〉
, (32)

where χ
q
p (r) and χ

q
n (r) are the relative radial wave functions

with the relative distance r for 3H +p (p) and 3He +n (n)
channels, respectively, and S, L, and J are the total intrinsic
spin, the orbital angular momentum between 3N and N , and
the total angular momentum (J = L + S), respectively. The
channel wave functions are given by �

q
p (3H +p) and �

q
n

(3He +n).
The relative radial wave functions χ

q
p (r) and χ

q
n (r) are

obtained by solving the Schrödinger equation

H |�q(4He)〉 = E |�q(4He)〉, (33)

where H = T + V is the Hamiltonian given by the kinetic
energy T and the nuclear plus Coulomb potential V .

Multiplying both sides of Eq. (33) by the channel wave
functions and integrating on the coordinates except for r, we
have the coupled-channels equations

[
− h̄2

2μp

(
d2

dr2
+ L(L + 1)

r2

)
+ V q

D (r) + e2

r
erf(

√
βr) − E

]
χq

p (r) = V q
C (r)χq

n (r),

[
− h̄2

2μn

(
d2

dr2
+ L(L + 1)

r2

)
+ V q

D (r) + 
ε − E

]
χq

n (r) = V q
C (r)χq

p (r), (34)

where β is a range of the folding Coulomb potential between proton and 3H cluster, and we use h̄2/μp(n) =
55.28 (55.23) MeV fm2 and β = 0.66 fm−2 in this model. The channel energy difference 
ε = 0.763 MeV is also used for
the threshold energies of 3H +p and 3He +n channels in 4He.

The diagonal potential [V q
D (r)] and the coupling potential [V q

C (r)] are obtained from T = 1 and T = 0 potentials which are
approximated by the single Gaussian [16]:

V q
D (r) = 1

2

{
V q,T =1 exp

(
− r2

b2
q,T =1

)
+ V q,T =0 exp

(
− r2

b2
q,T =0

)}
(35)

and

V q
C (r) = 1

2

{
V q,T =1 exp

(
− r2

b2
q,T =1

)
− V q,T =0 exp

(
− r2

b2
q,T =0

)}
. (36)

The strengths V q,T =0,1 and ranges bq,T =0,1 were determined so
as to reproduce the phase shift data of 3H +n, 3He +n, 3H +p,
and 3He +p as shown in Table I. The details of these potentials
and parameters are given in Ref. [16].

Using Gaussian basis function method [17], we solve the
eigenvalue problem of Eq. (34). Because the Gaussian basis

TABLE I. Parameters of the 3N − N potential V q,T .

T = 1 T = 0

q =2S+1 LJ bq,T =1 V q,T =1 q =2S+1 LJ bq,T =0 V q,T =0

(fm) (MeV) (fm) (MeV)

1S0 3.0 −27.6 1S0 3.0 −58.5
3S1 3.0 −26.6 3S1 3.0 −29.0
1P1 3.0 −16.5 1P1 0.0
3P0 1.54 −91.54 3P0 2.5 −49.5
3P1 3.06 −18.83 3P1 3.0 −8.0
3P2 3.03 −22.93 3P2 3.5 −20.0

functions are not orthogonal with each other, we transform
them to the orthonormal basis states which are eigenfunctions
of the overlap matrix. Applying the complex scaling method
(CSM), we choose the basis function parameters (N, b0, γ )
[17] so as to obtain the converged solutions, where N is the
total number of basis functions and then N/2 for each channel.
The parameters νi of the Gaussian basis functions (e−νir2

) are
given as νi = 1/(2b2

i ) for bi = b0γ
i−1 (i = 1, . . . , N/2) in the

geometric progression form with γ .

B. Results of 3H +p and 3He +n phase shifts

In Fig. 3, we show the energy eigenvalue distribution of
the 3P0, 3P1, and 3P2 states obtained in the CSM with θ = 30◦,
where N = 60, b0 = 0.3 fm, and γ = 1.3 are used. From
Fig. 3(a) (left-hand side) for the 3P0 state, we see that the sharp
resonance Er = 1.13 MeV with decay width � = 0.56 MeV
is obtained above 3He +n continuum states. From Fig. 3(c)
(right-hand side) for the 3P2 state, the broad resonance is found
at Er = 1.24 MeV with decay width � = 2.32 MeV between
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(a) (b) (c)

FIG. 3. Distribution of the energy eigenvalues in the complex energy plane obtained by solving the coupled-channels equation Eq. (34)
with θ = 30◦. The filled black circles represent the calculated eigenvalues and dashed lines are 2θ lines. Left (a): 3P0 state. Middle (b): 3P1

state. Right (c): 3P2 state.

3H +p and 3He +n continuum states. The result shown in (b)
of Fig. 3 (middle) indicates that the 3P1 state has no resonance
but only continuum solutions. These results are consistent
with the results of Ref. [8].

In Fig. 4, we show the results of the continuum level den-
sity (CLD) in Eq. (29) for the 3P1 state with different values of
θ . The obtained CLD has a clear stability with very small de-
pendence on the θ values, and we cannot distinguish lines for
different θ values. The total CLD [Fig. 4(a)], calculated using
Eq. (29) shows the same shape as shown in Fig. 5 of Ref. [8].
In panels (b) and (c) of Fig. 4, the partial CLDs projected on
3H +p and 3He +n channels are shown, respectively, and also
show a very small θ dependence. We can confirm that the total
CLD is the sum of every channel CLD and a bending behavior
of the total CLD of the 3P1 state at the threshold energy 
ε

comes from the difference between contributions from 3H +p
and 3He +n channel CLDs.

The phase shifts of 3P0, 3P1, and 3P2 states are given in
comparison with the experimental data in Fig. 5. As for the
3P2 states, the observed and calculated results are shown by
triangles and open curves, respectively. As shown in Fig. 3(c),
the 3P2 state has a broad resonance, and its calculated phase
shifts also present broad resonance-like behaviors for both
channels. Such calculated phase shift behaviors well explain
the observed data for two channels of the 3P2 state. As can
be seen from Fig. 5, the 3P1 phase shifts increase smoothly in
both 3H +p and 3He +n channels, and these results are consis-
tent with the energy-eigenvalue distribution [see Fig. 3(b)] of

no resonances. The calculated phase shifts (solid curves) for
the 3P1 state well reproduce the experimental data (circles).

As for the 3P0 state, however, we see discrepancy between
the calculated phase shifts (dotted lines in Fig. 5) and the
experimental data (stars) in 3H +p and 3He +n channels. The
experimental 3P0 phase shifts show very different behaviors
for 3H +p and 3He +n channels. In the 3H +p channel shown
in Fig. 5(a), the measured phase shifts increase rapidly from
0◦ up to 150◦ in the energy region below the 2 MeV, and
gradually go up to 210◦ between 2 and 4 MeV. In the 3He +n
channel, the experimental data starting 180◦ show a small
bump at E = 1.0–1.3 MeV, and then gradually go down
to 150◦. On the other hand, the calculated 3P0 phase shifts
show very similar resonance-like behaviors in both 3H +p and
3He +n channels, while they do not reach 180◦.

IV. PHASE SHIFTS OF THE 3P0 STATE

We make a detailed analysis of the calculated coupled-
channels phase shifts for the 3P0 state to get a deep
understanding the discrepancy between experiments and cal-
culations. For this aim, we calculate the phase shifts using
Eq. (31) and changing the strength of the coupling potential,
and try to get useful understandings of the coupling effect of
resonances on the phase shifts.

In the first step, we investigate the properties of the 3P0

resonant states seen in the eigenvalue distribution of Fig. 3(a).
This resonant pole is expected to give a resonance behavior

FIG. 4. The CLD of the 3P1 state for θ = 20◦, 30◦, and 35◦ measured from the 3H +p energy. (a) Left: the total CLD. (b) Middel; the
3H +p channel CLD. (c) Right: the 3He +n channel CLD. The vertical dashed line indicates the threshold energy of 3He +n channel.
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(a) (b)

FIG. 5. The phase shifts of P waves of 3H +p and 3He +n channels. The experimental data are taken from Ref. [18]. The observed phase
shifts are displayed by stars, circles, and triangles for the 3P0, 3P1, and 3P2 states, respectively. The calculated results are given by dotted (3P0),
solid (3P1), and open (3P2) curves, respectively. Left (a): the phase shifts of 3H +p channel. Right (b): the phase shifts of 3He +n channel.

of the observed 3H +p phase shift shown in Fig. 5(a). The
3He +n phase shift is seen to have a characteristic behavior
different from the 3H +p phase shift as shown in Fig. 5(b).
To see these problems, we solve the single-channel equations
for 3H +p and 3He +n by putting V q

C (r) = 0 in Eq. (34). For
q = 3P0, the potentials V q

D (r) and V q
C (r) are shown together

with V T =0,1(r) potentials in Fig. 6. The 3H +p channel has
the Coulomb potential, while the nuclear potential V q

D (r) is
common in both channels. The energy eigenvalues of the
complex scaled Schrödinger equations for 3H +p and 3He +n
are presented on the same complex plane in Fig. 7(a). We
find the resonances (E1 = 2.46 MeV, �1 = 4.14 MeV) and
(E2 = 2.79 MeV, �2 = 3.68 MeV) for the 3H +p and 3He +n
channels, respectively. They are very close to each other,
because of the common nuclear potential, the small Coulomb
potential, and the small threshold-energy difference.

In Fig. 7(b), we show the phase shifts calculated for single-
channel systems of 3H +p (thin solid line) and 3He +n (thick
solid line). The two channel phase shifts have similar behav-

FIG. 6. The diagonal potential [V q
D (r)], the coupling potential

[V q
C (r)], and the state dependence of the 3N − N potential for the

3P0 state. The diagonal and the coupling potentials are presented by
thick and thin solid curves. The potential for T = 0 and T = 1 states
are presented by thin and thick dashed curves.

ior. They start at threshold energies of 3H +p and of 3He +n,
respectively, and increase up to ≈90◦ gradually. These phase
shifts are decomposed into resonance and background terms
by using Eq. (19) for single-channel systems [6]. The reso-
nance and background terms are shown by broken and dotted
lines, respectively. We see that the resonance terms increase
up to 180◦, but the background terms decrease gradually op-
positely. These results are understood from the close position
of the two poles, and the potentials are the same for both chan-
nels, except for the small Coulomb potential. The background
terms show a strong repulsive behavior including the hard
sphere scattering. As a result, by cancellation of the resonance
and background terms, the single-channel phase shifts have a
broad resonance behavior and do not reach 90◦.

The eigenvalue distribution shown in Fig. 3(a) is obtained
by the coupled-channels calculation switching on the coupling
potential V q

C (r) by introducing the strength factor f moving
from 0 to 1 and multiplying it to V q

C (r). To see another higher
resonant pole, we show an enlarged figure in Fig. 8(a). We
find two resonant poles at (E1 = 1.13 MeV, �1 = 0.56 MeV)
and (E2 = 5.68 MeV, �2 = 11.92 MeV). We also see the re-
lation between these two resonant poles of single-channel and
coupled-channels systems from Fig. 8(a), where we display
traces of resonant poles calculated by changing the strength
factor f from zero to one for the coupling potential. The
resonant poles in the single-channel calculations of the 3H +p
and 3He +n systems go to the first and second resonant poles
separately in the coupled-channels system by increasing f .
The first resonant pole moves to lower energies and becomes
sharper, and so is expected to explain the observed resonance-
like phase shifts in the 3H +p and 3He +n channels. On the
other hand, the second resonant pole is shifted up due to the
coupling, and its large decay width is considered not to give a
large contribution to the phase shifts observed below 4 MeV.

The properties of the coupled-channels resonances can also
be seen from the channel amplitudes Aα

c . As for the 3P0 solu-
tions, we obtain

(
A1st−r

3H+p

)2 = 0.4740 + i0.0603,(
A1st−r

3He+n

)2 = 0.5260 − i0.0603
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(a)

(b)

FIG. 7. The eigenvalue distribution on the complex energy plane (a) and the calculated phase shifts (b) of the 3P0 state calculated without
the coupling potential for θ = 30◦. Left panel (a) displays the calculated single-channel eigenvalue distributions for 3H +p (open circles) and
3He +n (open triangles) channels. Right panel (b) shows the calculated singe-channel phase shifts. The contributions of the resonant poles
are expressed by thin and thick dashed curves, the continuum parts are displayed by thin and thick dotted curves, and the summations of the
resonant pole and continuum parts are implied by thin and thick solid curves for 3H +p and 3He +n channels, respectively.

for the first resonant state, and

(
A2nd−r

3H+p

)2 = 0.5160 + i0.0056,(
A2nd−r

3He+n

)2 = 0.4840 − i0.0056

for the second resonant state. The results indicate that these
resonances have almost half-and-half amplitudes of the 3H +p
and 3He +n channels due to the strong coupling. Such a strong
channel coupling is explained from the fact that the resonance
energies of the single channels are very close as shown in
Fig. 8(a), and the coupling potential V

3H+p
C (r) shown in Fig. 6

is rather strong. Furthermore, the almost half-and-half ampli-
tudes suggest that the resonant states are good isospin states
of T = 0 or 1, and are consistent with the experimental data
of 4He indicating the first 0− of T = 0 at Ex = 21.01 MeV
(Er = 1.19 MeV) and the second 0− of T = 1 at 25.28 MeV
(5.46 MeV) [19].

In the next step, we investigate the coupled-channels phase
shifts by applying the decomposition method of Eq. (31). In
the (3H +p) + (3He +n) coupled-channels system, the reso-
nance phase shift of the αth solution is

δα
c (E ) = −Im

{(
Aα

c

)2}
ln
∣∣E − εr

α + iεi
α

∣∣
+ Re

{(
Aα

c

)2}[
tan−1

(
εi
α

E − εr
α

)
+ π

2

]
, (37)

where the channel index c indicates 3H +p or 3He +n channel.
The background phase shifts of the c channel are given by

δα
bg(E ) = δc(E ) − δα

c (E ). (38)

In Fig. 8(b), the results of decomposition are shown for the
two resonant states.

The first resonant state (dash-dot lines) has a sharp rising
behavior similarly in both the 3H +p and 3He +n channels,
but their resonance-like curves do not reach 180◦. This be-
havior is understood from the (A1st−r

c )2 amplitudes, where the

(a)

(b)

FIG. 8. The eigenvalue distribution on the complex energy plane (a) and the calculated phase shifts (b) of the 3P0 state with the coupling
potential Eq. (36) for θ = 30◦. In (a) the calculated coupled-channels eigenvalue distribution is expressed by solid diamonds. The open circles
and open triangles present the first and second resonant poles obtained by changing the strength factor f for the coupling potential, respectively.
The arrows show the pole trajectory of the two resonant poles at different strength factor f for the coupling potential. In (b) the decomposition
of the calculated coupled-channels phase shifts is presented. The contributions of the resonant poles are expressed by thin and thick dotted
dashed and dashed curves, the continuum parts are displayed by thin and thick dotted curves, and the summations of the resonant poles and
continuum parts are implied by thin and thick solid curves for 3H +p and 3He +n channels, respectively.
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real parts are almost half-and-half amplitudes in the 3H +p
and 3He +n channels and the logartihmic terms in Eq. (37) are
negligible because of very small imaginary values of (A1st−r

c )2.
The second broad resonance (broken lines) has slowly increas-
ing behavior in the 3H +p and 3He +n channels commonly.
We cannot distinguish two thick and thin broken lines de-
scribing the contributions of different channels. Thus, the
obtained second resonance is considered to give no effective
contributions to the low energy phase shift behavior as well, as
described above. From Fig. 8(b), we also see the background
terms (dotted lines) of each channel, which are defined by
subtraction of the first and second resonance contributions
from the phase shift δc. The repulsive background terms show
gentle energy dependence and seem to cancel the second
resonance contributions. As a result, the total phase shifts of
the 3P0 state (solid lines) shows a mild resonance behavior that
do not reach 90◦ in both 3H +p and 3He +n channels, which
is not consistent with the experimental data.

V. SUMMARY AND CONCLUSION

With the development of research into unstable nuclei, it
has become necessary to study the unbound states of nuclear
many-body systems at the same time as the bound states.
For this aim, the complex scaling method (CSM) has been
successfully applied so far. We have also emphasized that
CSM is very effective not only for the study of many-body
resonant states but also for the study of many-body scattering
states [3,4]. For example, the contribution of the three-body
resonant state in the three-body breakup reactions [20,21] and
the spectral decomposition of the two-body scattering phase
shifts [6] can be mentioned.

In this paper, we tried the extension of the spectral de-
composition of two-body single-channel scattering phase
shifts to coupled-channels cases, and proposed a decompo-
sition expression by using energy eigenvalues and channel
amplitudes of solutions in the eigenvalue problem for the
complex-scaled Hamiltonian. This method was applied to the
(3H +p) + (3He +n) coupled-channels model for 4He, which

was successfully developed in Ref. [16]. We confirmed that
the present method and the (3H +p) + (3He +n) coupled-
channels model work well by comparing with the previous
calculations [7,8] and the experimental data [18]. However,
we find that the experimental 3P0 phase shifts are inconsistent
with the present calculations.

To understand the reason why the calculation of the 3P0

phase shifts shows results different from the experimental
data, we analyzed the resonance solutions and the 3P0 phase
shifts by applying the present decomposition method in the
CSM. In the present 3H +p and 3He +n coupled-channels
model, we calculate two 3P0 state resonances which corre-
spond to observed two 0− resonant states in 4He [19]. From
the single-channel and coupled-channels calculations, we find
that the two resonances in the single channel are strongly
mixed in the coupled channels: one as a sharp resonance at
low energy and the other as a wide resonance at high energy.
The low-energy phase shifts above the threshold energies are
dominated by the first resonant state that has fifty-fifty ampli-
tudes of 3H +p and 3He +n channels. These results indicate
that the 3H +p and 3He +n channel phase shifts have very
similar behavior in the low energy region.

Thus this method of the decomposition of the coupled-
channels phase shifts is very useful in understanding the
behavior of phase shifts in association with resonant states
and their structures. In these calculations, we employed the
3H +p and 3He +n coupled-channels model using the 3N − N
potentials previously developed [16]. It is an interesting prob-
lem to search the appropriate 3N − N potentials to explain the
observed 3P0 phase shifts [18].
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[3] S. Aoyama, T. Myo, K. Katō, and K. Ikeda, Prog. Theor. Phys.
116, 1 (2006).

[4] T. Myo, Y. Kikuchi, H. Masui and K. Katō, Prog. Part. Nucl.
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